羅傑斯-斯澤格多項式(英語:Rogers–Szegő polynomials)是1926年匈牙利數學家斯澤格首先研究的在單位圓上的正交多項式,以Q階乘冪定義如下; h n ( x ; q ) = ∑ k = 0 n ( q ; q ) n ( q ; q ) k ( q ; q ) n − k x k {\displaystyle h_{n}(x;q)=\sum _{k=0}^{n}{\frac {(q;q)_{n}}{(q;q)_{k}(q;q)_{n-k}}}x^{k}} Rogers-Szego Polynomials Rogers-Szego Polynomials 前面幾個羅傑斯-斯澤格多項式為: h 1 ( x ; q ) = 1 + x {\displaystyle h_{1}(x;q)=1+x} h 2 ( x ; q ) = 1 + ( 1 − q 2 ) ∗ x ( 1 − q ) + x 2 {\displaystyle h_{2}(x;q)=1+{\frac {(1-q^{2})*x}{(1-q)}}+x^{2}} h 3 ( x ; q ) = 1 + ( 1 − q 3 ) ∗ x ( 1 − q ) + ( 1 − q 3 ) ∗ x 2 ( 1 − q ) + x 3 {\displaystyle h_{3}(x;q)=1+{\frac {(1-q^{3})*x}{(1-q)}}+{\frac {(1-q^{3})*x^{2}}{(1-q)}}+x^{3}} h 4 ( x ; q ) = 1 + ( 1 − q 4 ) ∗ x ( 1 − q ) + ( 1 − q 3 ) ∗ ( 1 − q 4 ) ∗ x 2 ( ( 1 − q ) ∗ ( 1 − q 2 ) ) + ( 1 − q 4 ) ∗ x 3 ( 1 − q ) + x 4 {\displaystyle h_{4}(x;q)=1+{\frac {(1-q^{4})*x}{(1-q)}}+{\frac {(1-q^{3})*(1-q^{4})*x^{2}}{((1-q)*(1-q^{2}))}}+{\frac {(1-q^{4})*x^{3}}{(1-q)}}+x^{4}} h 5 ( x ; q ) = 1 + ( 1 − q 5 ) ∗ x ( 1 − q ) + ( 1 − q 4 ) ∗ ( 1 − q 5 ) ∗ x 2 ( ( 1 − q ) ∗ ( 1 − q 2 ) ) + ( 1 − q 4 ) ∗ ( 1 − q 5 ) ∗ x 3 ( ( 1 − q ) ∗ ( 1 − q 2 ) ) + ( 1 − q 5 ) ∗ x 4 ( 1 − q ) + x 5 {\displaystyle h_{5}(x;q)=1+{\frac {(1-q^{5})*x}{(1-q)}}+{\frac {(1-q^{4})*(1-q^{5})*x^{2}}{((1-q)*(1-q^{2}))}}+{\frac {(1-q^{4})*(1-q^{5})*x^{3}}{((1-q)*(1-q^{2}))}}+{\frac {(1-q^{5})*x^{4}}{(1-q)}}+x^{5}} Remove ads參考文獻 Gasper, George; Rahman, Mizan, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications 96 2nd, Cambridge University Press, 2004, ISBN 978-0-521-83357-8, MR 2128719, doi:10.2277/0521833574 Szegő, Gábor, Beitrag zur theorie der thetafunktionen, Sitz Preuss. Akad. Wiss. Phys. Math. Ki., 1926, XIX: 242–252, Reprinted in his collected papers Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads