热门问题
时间线
聊天
视角
質數階乘
表示小於一個數的所有素數的乘積的整數 来自维基百科,自由的百科全书
Remove ads
質數階乘(又稱:素數階乘)是所有小於或等於該數的質數的積,自然數n的質數階乘,寫作n#。例如10以下的質數有:2、3、5、7,所以10# = 7×5×3×2 = 210。第n個質數階乘的值,寫作pn#。例:第三個質數為5,所以p3# = 5# = 5×3×2 = 30。 質數階乘與階乘不同於,質數階乘是質數乘積而階乘是自然數乘積。 質數階乘由Harvey Dubner定義並命名。


用質數定義
第n個質數pn的質數階乘pn#定義為前n個質數的積:[1][2]
其中pk是第k個質數。
例如,p5#代表前五個質數的乘積:
前幾個質數階乘pn#是:
並定義p0# = 1 為空積。
質數階乘pn#的漸進遞增為:
其中"exp"是指數函數ex
Remove ads
用自然數定義
一般情況下,對於正整數n的一質數階乘n#(或稱作自然質數階乘)也可以被定義為:[1][3]
其中,π(n)是質數計數函數(OEIS數列A000720),表示小於或等於某個實數n的質數的個數。
它等於:
例如,12# 代表質數≤ 12:
因為π(12) = 5,所以這個算式也可以寫成:
前幾個自然質數階乘n#是:
不難發現當n為合成數時,n#的值總是與(n-1)#相同。例如上面提及的12# = p5# = 11#,因為12為合成數。
n#的自然對數是第一個柴比雪夫函數,記為 或 。換句話說,若是不大於n的質數的質數階乘,則,或等價地,[4]
質數階乘n#的漸進遞增為:
質數階乘的概念可以用於證明質數是無限的。(參見證明黎曼ζ函數的歐拉乘積公式)
Remove ads
恆等式
黎曼ζ函數在超過1的正整數可以質數階乘與 Jordan's totient function 表示:
質數階乘列表(部分)
參見
參考文獻
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads