邏輯運算子
来自维基百科,自由的百科全书
在形式邏輯中,邏輯運算子或邏輯聯結詞把語句連接成更複雜的複雜語句。例如,假設有兩個邏輯命題,分別是「正在下雨」和「我在屋裡」,我們可以將它們組成複雜命題「正在下雨,並且我在屋裡」或「沒有正在下雨」或「如果正在下雨,那麼我在屋裡」。一個將兩個語句組成的新的語句或命題叫做複合語句或複合命題。又稱邏輯運算子(Logical Operators)。
此條目沒有列出任何參考或來源。 (2018年12月5日) |
基本運算子
基本的運算子有:「非」(¬)、「與」(∧)、「或」(∨)、「條件」(→)以及「雙條件」(↔)。「非」是一個一元運算子,它只操作一項(¬ P)。剩下的是二元運算子,操作兩項來組成複雜語句(P ∧ Q, P ∨ Q, P → Q, P ↔ Q)。
注意,符號「與」(∧)和交集(∩),「或」(∨)和聯集(∪)的相似性。這不是巧合:交集的定義使用「與」,聯集的定義是用「或」。
這些連接符的真值表:
P | Q | ¬P | P ∧ Q | P ∨ Q | P → Q | P ↔ Q |
---|---|---|---|---|---|---|
T | T | F | T | T | T | T |
T | F | F | F | T | F | F |
F | T | T | F | T | T | F |
F | F | T | F | F | T | T |
為了減少需要的括號的數量,有以下的優先規則:¬高於∧,∧高於∨,∨高於→。例如,P ∨ Q ∧ ¬ R → S是 (P ∨ (Q ∧ (¬ R)) → S的簡便寫法。
二元邏輯聯結詞表
下面是在輸入P和Q上的16個二元布林函數。
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
Wikiwand - on
Seamless Wikipedia browsing. On steroids.