热门问题
时间线
聊天
视角
錢珀瑙恩數
一个实数的超越数 来自维基百科,自由的百科全书
Remove ads
錢珀瑙恩數(Champernowne constant)C10是一個實數的超越數,其十進制表示法有重要的特性,得名自數學家D. G.錢珀瑙恩,在1933年以本科生(劍橋大學)的身份發表有關錢珀瑙恩數的論文。
此條目需要擴充。 (2013年2月14日) |
在十進制下,可以用連續整數來定義錢珀瑙恩數:
也可以定義其他進制系統下的錢珀瑙恩數:
錢珀瑙恩字(Champernowne word)或是巴比爾字(Barbier word)是指由Ck各位數形成的數列[1][2]。
十進制下的錢珀瑙恩數C10為正規數,是每個數字出現機會均等的實數。
Remove ads
性質
實數x若在某一進制b下,其數字都是均勻分佈,此實數在底數b下為正規數。均勻分佈的意思是所有數字出現比率相近,所有二位數字組合出現比率相近,所有三位數字組合出現比率相近等。若實數在所有進制都是正規數,則稱為絕對正規數。
若將一數字的各位數組成一字串,為[a0, a1, ...],而此數字在10進制下正規數,因此可以預期,此字串中,字串[0], [1], [2], …, [9]出現的機率都是1/10,而字串[0,0], [0,1], ..., [9,8], [9,9]出現的機率都是1/100。
錢珀瑙恩證明了在十進制下為正規數[3],Nakai和Shiokawa證明了更通用的定理:也就是在b進制下都會正規數[4]。有關在的條件下,在b進制是否是正規數,這問題是還沒有答案的開放問題。例如,目前還不知道在9進制下是否是正規數。例如的前54位數是0.123456789101112131415161718192021222324252627282930313,在9進制下表示為。
Kurt Mahler證明錢珀瑙恩數是超越數[5]。的無理性度量(表示用有理數近似此數字的困難程度)為,而針對的進制,[6]。
Remove ads
相關條目
參考資料
文獻
外部連結
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads