阿基米德中點定理(英語:Archimedes' Midpoint Theorem),又稱為阿基米德折弦定理,是一個關於圓的定理。若一個圓上有兩點 A , B {\displaystyle A,B} , M {\displaystyle M} 為弧 A B ⌢ {\displaystyle {\overset {\frown }{AB}}} 的中點,隨意選圓上的一點 C {\displaystyle C} ,再選 A C ¯ {\displaystyle {\overline {AC}}} 上一點 D {\displaystyle D} 使得 M D ¯ {\displaystyle {\overline {MD}}} 垂直 A C ¯ {\displaystyle {\overline {AC}}} 。若 M {\displaystyle M} 、 C {\displaystyle C} 在弦 A B ⌢ {\displaystyle {\overset {\frown }{AB}}} 異側,則 A D ¯ {\displaystyle {\overline {AD}}} = C D ¯ {\displaystyle {\overline {CD}}} - B C ¯ {\displaystyle {\overline {BC}}} ;若 M {\displaystyle M} 、 C {\displaystyle C} 在弦 A B ⌢ {\displaystyle {\overset {\frown }{AB}}} 同側,則 A D ¯ {\displaystyle {\overline {AD}}} = C D ¯ {\displaystyle {\overline {CD}}} + B C ¯ {\displaystyle {\overline {BC}}} 。 在此圖中AD=DC+BC Remove ads證明 若為同側:在線段 A D ¯ {\displaystyle {\overline {AD}}} 上取點 X {\displaystyle X} ,使得 D X ¯ = D C ¯ {\displaystyle {\overline {DX}}={\overline {DC}}} ,由於 M D ¯ ⊥ A C ¯ {\displaystyle {\overline {MD}}\perp {\overline {AC}}} ,有 M X ¯ = M C ¯ {\displaystyle {\overline {MX}}={\overline {MC}}} 。又因為 M {\displaystyle M} 為弧 A B ⌢ {\displaystyle {\overset {\frown }{AB}}} 中點, A M ⌢ = B M ⌢ {\displaystyle {\overset {\frown }{AM}}={\overset {\frown }{BM}}} 。 同時由圓周角定理知: ∠ M A C = ∠ M B C {\displaystyle \angle MAC=\angle MBC} , ∠ A B M = ∠ A C M {\displaystyle \angle ABM=\angle ACM} , 所以 ∠ X M C = 2 ∠ D M C = 180 ∘ − 2 ∠ A C M = 180 ∘ − 2 ∠ A B M = ∠ A M B {\displaystyle \angle XMC=2\angle DMC=180^{\circ }-2\angle ACM=180^{\circ }-2\angle ABM=\angle AMB} , 所以 ∠ A M X = ∠ A M C − ∠ X M C = ∠ A M C − ∠ A M B = ∠ B M C {\displaystyle \angle AMX=\angle AMC-\angle XMC=\angle AMC-\angle AMB=\angle BMC} , 所以 △ A M X ≅ △ B M C {\displaystyle \triangle AMX\cong \triangle BMC} , 所以 A X ¯ = B C ¯ {\displaystyle {\overline {AX}}={\overline {BC}}} , A D ¯ = A X ¯ + X D ¯ = D C ¯ + C B ¯ {\displaystyle {\overline {AD}}={\overline {AX}}+{\overline {XD}}={\overline {DC}}+{\overline {CB}}} ,命題得證。 若為異側:在線段 A D ¯ {\displaystyle {\overline {AD}}} 延長線上取點 X {\displaystyle X} ,使 D X ¯ = A D ¯ {\displaystyle {\overline {DX}}={\overline {AD}}} .因為 M {\displaystyle M} 為弧 A B ⌢ {\displaystyle {\overset {\frown }{AB}}} 中點,所以 ∠ A C M = ∠ B C M {\displaystyle \angle ACM=\angle BCM} 。又因為四邊形 A M B C {\displaystyle AMBC} 為圓內接四邊形,所以,延長 C B ¯ {\displaystyle {\overline {CB}}} 至 P {\displaystyle P} ,則 ∠ M B P = ∠ M A C {\displaystyle \angle MBP=\angle MAC} 。但是 A D ¯ = D X ¯ {\displaystyle {\overline {AD}}={\overline {DX}}} , ∠ A D M {\displaystyle \angle ADM} 為直角,所以 △ A D M ≅ △ X D M {\displaystyle \triangle ADM\cong \triangle XDM} ; ∠ M A C = ∠ A X M {\displaystyle \angle MAC=\angle AXM} ; ∠ M B P = ∠ A X M {\displaystyle \angle MBP=\angle AXM} ; ∠ C X M = ∠ C B M {\displaystyle \angle CXM=\angle CBM} 。 又 C M ¯ = C M ¯ {\displaystyle {\overline {CM}}={\overline {CM}}} ,所以 △ C X M ≅ △ C B M {\displaystyle \triangle CXM\cong \triangle CBM} 。 承上所述,所以 C X ¯ = C B ¯ {\displaystyle {\overline {CX}}={\overline {CB}}} 。所以 A D ¯ = D C ¯ − C X ¯ = D C ¯ − C B ¯ {\displaystyle {\overline {AD}}={\overline {DC}}-{\overline {CX}}={\overline {DC}}-{\overline {CB}}} 。 Remove ads外部連結 Java程式 (by Jim Loy) 這是一篇關於幾何學的小作品。您可以透過編輯或修訂擴充其內容。閱論編 Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads