高級Z轉換(英語:Advanced z-transform,或 modified z-transform)是Z轉換的延伸,是數學及信號處理領域中的工具,它將不是取樣週期整數倍的延遲考慮進去。具有以下形式 F ( z , m ) = ∑ k = 0 ∞ f ( k T + m ) z − k {\displaystyle F(z,m)=\sum _{k=0}^{\infty }f(kT+m)z^{-k}} 此條目已列出參考文獻,但因為沒有文內引註而使來源仍然不明。 (2018年7月5日) 此條目包含過多行話或專業術語,可能需要簡化或提出進一步解釋。 (2018年7月5日) 其中 T為取樣週期 m為延遲參數(delay parameter), 0 ≤ m < T {\displaystyle 0\leq m<T} Remove ads性質 如果延遲參數m固定,則Z轉換具有的性質在高級Z轉換也都成立。 線性 Z { ∑ k = 1 n c k f k ( t ) } = ∑ k = 1 n c k F k ( z , m ) {\displaystyle {\mathcal {Z}}\left\{\sum _{k=1}^{n}c_{k}f_{k}(t)\right\}=\sum _{k=1}^{n}c_{k}F_{k}(z,m)} Remove ads時移 Z { u ( t − n T ) f ( t − n T ) } = z − n F ( z , m ) {\displaystyle {\mathcal {Z}}\left\{u(t-nT)f(t-nT)\right\}=z^{-n}F(z,m)} Z域的尺度性質 Z { f ( t ) e − a t } = e − a m F ( e a T z , m ) {\displaystyle {\mathcal {Z}}\left\{f(t)e^{-a\,t}\right\}=e^{-a\,m}F(e^{a\,T}z,m)} Remove ads微分 Z { t y f ( t ) } = ( − T z d d z + m ) y F ( z , m ) {\displaystyle {\mathcal {Z}}\left\{t^{y}f(t)\right\}=\left(-Tz{\frac {d}{dz}}+m\right)^{y}F(z,m)} Remove ads終值定理 lim k → ∞ f ( k T + m ) = lim z → 1 ( 1 − z − 1 ) F ( z , m ) {\displaystyle \lim _{k\to \infty }f(kT+m)=\lim _{z\to 1}(1-z^{-1})F(z,m)} Remove ads範例 以下計算 f ( t ) = cos ( ω t ) {\displaystyle f(t)=\cos(\omega t)} 的高級Z轉換: F ( z , m ) = Z { cos ( ω ( k T + m ) ) } = Z { cos ( ω k T ) cos ( ω m ) − sin ( ω k T ) sin ( ω m ) } = cos ( ω m ) Z { cos ( ω k T ) } − sin ( ω m ) Z { sin ( ω k T ) } = cos ( ω m ) z ( z − cos ( ω T ) ) z 2 − 2 z cos ( ω T ) + 1 − sin ( ω m ) z sin ( ω T ) z 2 − 2 z cos ( ω T ) + 1 = z 2 cos ( ω m ) − z cos ( ω ( T − m ) ) z 2 − 2 z cos ( ω T ) + 1 {\displaystyle {\begin{aligned}F(z,m)&={\mathcal {Z}}\left\{\cos \left(\omega \left(kT+m\right)\right)\right\}\\&={\mathcal {Z}}\left\{\cos(\omega kT)\cos(\omega m)-\sin(\omega kT)\sin(\omega m)\right\}\\&=\cos(\omega m){\mathcal {Z}}\left\{\cos(\omega kT)\right\}-\sin(\omega m){\mathcal {Z}}\left\{\sin(\omega kT)\right\}\\&=\cos(\omega m){\frac {z\left(z-\cos(\omega T)\right)}{z^{2}-2z\cos(\omega T)+1}}-\sin(\omega m){\frac {z\sin(\omega T)}{z^{2}-2z\cos(\omega T)+1}}\\&={\frac {z^{2}\cos(\omega m)-z\cos(\omega (T-m))}{z^{2}-2z\cos(\omega T)+1}}\end{aligned}}} 若 m = 0 {\displaystyle m=0} ,則 F ( z , m ) {\displaystyle F(z,m)} 簡化為 F ( z , 0 ) = z 2 − z cos ( ω T ) z 2 − 2 z cos ( ω T ) + 1 {\displaystyle F(z,0)={\frac {z^{2}-z\cos(\omega T)}{z^{2}-2z\cos(\omega T)+1}}} 正是 f ( t ) = cos ( ω t ) {\displaystyle f(t)=\cos(\omega t)} 的Z轉換 Remove ads參考文獻 Eliahu Ibrahim Jury, Theory and Application of the z-Transform Method, Krieger Pub Co, 1973. ISBN 0-88275-122-0. Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads