黎卡提方程是形式如 y ′ = q 0 ( x ) + q 1 ( x ) y + q 2 ( x ) y 2 {\displaystyle y'=q_{0}(x)+q_{1}(x)y+q_{2}(x)y^{2}} 的常微分方程。該方程以義大利數學家雅各布·黎卡提命名。 此條目可參照外語維基百科相應條目來擴充。 Remove ads解法 先同乘 q 2 ( x ) {\displaystyle q_{2}(x)} ,使得 q 2 y ′ = q 0 q 2 + q 1 q 2 y + q 2 2 y 2 {\displaystyle q_{2}y'=q_{0}q_{2}+q_{1}q_{2}y+q_{2}^{2}y^{2}} 再以 v = y q 2 {\displaystyle v=yq_{2}} 代入: v ′ = v 2 + P ( x ) v + Q ( x ) {\displaystyle v'=v^{2}+P(x)v+Q(x)} ;其中令 Q ( x ) = q 0 q 2 ; P ( x ) = q 1 + q 2 ′ q 2 {\displaystyle Q(x)=q_{0}q_{2};P(x)=q_{1}+{\frac {q_{2}'}{q_{2}}}} 。 再以 v = − u ′ u {\displaystyle v=-{\frac {u'}{u}}} 代入上式。 v ′ = − ( u ′ u ) ′ = − u ″ u + ( u ′ u ) 2 = − u ″ u + v 2 {\displaystyle v'=-\left({\frac {u'}{u}}\right)'=-{\frac {u''}{u}}+\left({\frac {u'}{u}}\right)^{2}=-{\frac {u''}{u}}+v^{2}\!} 則 u ″ u = v 2 − v ′ = − Q − P v = − Q + P u ′ u {\displaystyle {\frac {u''}{u}}=v^{2}-v'=-Q-Pv=-Q+P{\frac {u'}{u}}} 因此 u ″ − P u ′ + Q u = u ″ − ( q 1 + q 2 ′ q 2 ) u ′ + q 0 q 2 u = 0 {\displaystyle u''-Pu'+Qu=u''-(q_{1}+{\frac {q_{2}'}{q_{2}}})u'+q_{0}q_{2}u=0} 最終 y = − u ′ q 2 u {\displaystyle y=-{\frac {u'}{q_{2}u}}} . Remove ads施瓦茨方程上的應用 S ( w ) ≡ ( w ″ w ′ ) ′ − ( w ″ w ′ ) 2 2 = f {\displaystyle S(w)\equiv \left({\frac {w''}{w'}}\right)'-{\frac {\left({\frac {w''}{w'}}\right)^{2}}{2}}=f} 顯然可設 y = w ″ w ′ {\displaystyle y={\frac {w''}{w'}}} : y ′ − y 2 2 = f {\displaystyle y'-{\frac {y^{2}}{2}}=f} 再代入 − 2 u ′ u = y {\displaystyle -{\frac {2u'}{u}}=y} ,得線性微分方程: u ″ − 1 2 f u = 0 {\displaystyle u''-{\frac {1}{2}}fu=0} 因為 w ″ w ′ = − 2 u ′ u {\displaystyle {\frac {w''}{w'}}=-{\frac {2u'}{u}}} ,積分得 w ′ = C u 2 {\displaystyle w'={\frac {C}{u^{2}}}} 。另一方面,若線性微分方程有其他線性獨立解U,則有: w ′ = U ′ u − U u ′ u 2 {\displaystyle w'={\frac {U'u-Uu'}{u^{2}}}} w = U u {\displaystyle w={\frac {U}{u}}} Remove ads已知某一特定解 已知 y = y 1 {\displaystyle y=y_{1}} 是一特定解,可設通解 y = y 1 + 1 z {\displaystyle y=y_{1}+{\frac {1}{z}}} ,代入整理得一階線性常微分方程: z ′ + ( q 1 + 2 q 2 y 1 ) z = − q 2 {\displaystyle z'+(q_{1}+2q_{2}y_{1})z=-q_{2}} 參見 LQR控制器 伯努利微分方程 柯西-歐拉方程 克萊羅方程 全微分方程 線性微分方程 Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads