Coshc函數常見於有關光學散射[1]、海森堡時空[2]和雙曲幾何學的論文中[3]其定義如下:[4][5] Coshc ( z ) = cosh ( z ) z {\displaystyle \operatorname {Coshc} (z)={\frac {\cosh(z)}{z}}} 它是下列微分方程的一個解: w ( z ) z − 2 d d z w ( z ) − z d 2 d z 2 w ( z ) = 0 {\displaystyle w\left(z\right)z-2\,{\frac {d}{dz}}w\left(z\right)-z{\frac {d^{2}}{d{z}^{2}}}w\left(z\right)=0} Coshc 2D plot Coshc'(z) 2D plot 復域虛部 Im ( cosh ( x + i y ) x + i y ) {\displaystyle \operatorname {Im} \left({\frac {\cosh(x+iy)}{x+iy}}\right)} 復域實部 Re ( cosh ( x + i y ) x + i y ) {\displaystyle \operatorname {Re} \left({\frac {\cosh \left(x+iy\right)}{x+iy}}\right)} 絕對值 | cosh ( x + i y ) x + i y | {\displaystyle \left|{\frac {\cosh(x+iy)}{x+iy}}\right|} 一階導數 sinh ( z ) z − cosh ( z ) z 2 {\displaystyle {\frac {\sinh(z)}{z}}-{\frac {\cosh(z)}{z^{2}}}} 導數實部 − Re ( − 1 − ( cosh ( x + i y ) ) 2 x + i y + cosh ( x + i y ) ( x + i y ) 2 ) {\displaystyle -\operatorname {Re} \left(-{\frac {1-(\cosh(x+iy))^{2}}{x+iy}}+{\frac {\cosh(x+iy)}{(x+iy)^{2}}}\right)} 導數虛部 − Im ( − 1 − ( cosh ( x + i y ) ) 2 x + i y + cosh ( x + i y ) ( x + i y ) 2 ) {\displaystyle -\operatorname {Im} \left(-{\frac {1-(\cosh(x+iy))^{2}}{x+iy}}+{\frac {\cosh(x+iy)}{(x+iy)^{2}}}\right)} 導數絕對值 | − 1 − ( cosh ( x + i y ) ) 2 x + i y + cosh ( x + i y ) ( x + i y ) 2 | {\displaystyle \left|-{\frac {1-(\cosh(x+iy))^{2}}{x+iy}}+{\frac {\cosh(x+iy)}{(x+iy)^{2}}}\right|} Remove ads表示為其他特殊函數 Coshc ( z ) = ( i z + 1 / 2 π ) M ( 1 , 2 , i π − 2 z ) e 1 / 2 i π − z z {\displaystyle \operatorname {Coshc} (z)={\frac {\left(iz+1/2\,\pi \right){{\rm {M}}\left(1,\,2,\,i\pi -2\,z\right)}}{{{\rm {e}}^{1/2\,i\pi -z}}z}}} Coshc ( z ) = 1 2 ( 2 i z + π ) H e u n B ( 2 , 0 , 0 , 0 , 2 1 / 2 i π − z ) e 1 / 2 i π − z z {\displaystyle \operatorname {Coshc} (z)={\frac {1}{2}}\,{\frac {\left(2\,iz+\pi \right){\it {HeunB}}\left(2,0,0,0,{\sqrt {2}}{\sqrt {1/2\,i\pi -z}}\right)}{{{\rm {e}}^{1/2\,i\pi -z}}z}}} Coshc ( z ) = − i ( 2 i z + π ) W h i t t a k e r M ( 0 , 1 / 2 , i π − 2 z ) ( 4 i z + 2 π ) z {\displaystyle \operatorname {Coshc} (z)={\frac {-i\left(2\,iz+\pi \right){{\rm {\mathbf {W} hittakerM}}\left(0,\,1/2,\,i\pi -2\,z\right)}}{\left(4\,iz+2\,\pi \right)z}}} Remove ads級數展開 Coshc z ≈ ( z − 1 + 1 2 z + 1 24 z 3 + 1 720 z 5 + 1 40320 z 7 + 1 3628800 z 9 + 1 479001600 z 11 + 1 87178291200 z 13 + O ( z 15 ) ) {\displaystyle \operatorname {Coshc} z\approx ({z}^{-1}+{\frac {1}{2}}z+{\frac {1}{24}}{z}^{3}+{\frac {1}{720}}{z}^{5}+{\frac {1}{40320}}{z}^{7}+{\frac {1}{3628800}}{z}^{9}+{\frac {1}{479001600}}{z}^{11}+{\frac {1}{87178291200}}{z}^{13}+O\left({z}^{15}\right))} Remove ads圖集 Coshc abs complex 3D Coshc Im complex 3D plot Coshc Re complex 3D plot Coshc'(z) Im complex 3D plot Coshc'(z) Re complex 3D plot Coshc'(z) abs complex 3D plot Coshc'(x) abs density plot Coshc'(x) Im density plot Coshc'(x) Re density plot 參見 Tanc函數 Tanhc函數 Sinhc函數 參考文獻Loading content...Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads