热门问题
时间线
聊天
视角

Minigo

围棋软件 来自维基百科,自由的百科全书

Remove ads

Minigo是一套電腦圍棋軟體。

快速預覽 目前版本, 原始碼庫 ...

簡介

Minigo是一套依照Google DeepMind在《自然》上對於AlphaGo Zero所發表的論文《Mastering the game of Go without human knowledge[3]》所實做出的開源電腦圍棋程式[4],也就是不使用人類棋譜與累積的圍棋知識,僅實做圍棋規則,使用單一類神經網路從自我對弈中學習(不像AlphaGo以人類角度思考,設計了Policy Network與Value Network)。

軟體是基於Brain Lee的MuGo繼續開發,使用PythonC++撰寫,並且透過TensorFlow實做類神經網路的部份[4]。程式碼以Apache License 2.0釋出[2],訓練資料以公有領域Public domain)釋出[5]

專案的目標包括了[4]

除此之外,專案也希望藉由獨立另外實做,驗證Leela Zero所產生的疑問[6]

Remove ads

與Google及DeepMind的關聯

這個計畫雖然是掛在TensorFlowGitHub下(且TensowFlow是由Google研發出的軟體),而且主要的專案貢獻者Andrew Jackson[7][註 1]與Tom Madams[註 2]都是Google員工,但官方一再強調這並非TensorFlow專案的一環[6],也不是Google DeepMindAlphaGo官方版本,而是由獨立的團隊依照AlphaGo Zero的論文而實做出的版本[4][8]

版本演進

雖然GoogleGoogle DeepMind沒有正式參與Minigo計畫,但Andrew Jackson使用的是Google所提供的20%時間[6],並且得到Google贊助提供硬體資源進行運算,供Minigo團隊確認程式正確性[4][9]

第一階段(2017年十月)
使用約1000 CPU cores(沒有GPU)跑兩週,訓練9x9棋盤,主要是確認程式實做的正確性。
第二階段(2017年十二月至2018年一月)
使用約1000 GPU跑四個禮拜,訓練19x19棋盤,使用20 blocks x 128 filters,在更大的規模上邊修正bug,邊對程式做出各類改善,並摸索論文裡沒有提到的細節要如何實做。在160個迭代(generation)後,團隊將訓練結果放到KGSCGOS上對弈,以somebot為名,後面的數字表示是哪個迭代。最終大約跑了250個迭代。
第三階段(2018年1月20日至2月1日)
在確認論文內不清楚的地方,嘗試後從錯誤中學到不少事情。
第四階段(2018年2月7日後至三月)
因為19x19的成果受限,改回使用9x9訓練,在大約一個禮拜的訓練後達到職業水準。
v5(2018年三月至四月)
引擎部份改用C++重寫,以改善效能。
v7a(2018年五月的第一周)
v7(2018年5月16日至7月17日)
v9(2018年7月19日至8月1日)
取得新的資源,使用600個TPU(v2)訓練。
v10(2018年8月28日至9月14日)
v11(2018年9月14日至9月17日)
v12
v13
v14
v15

合作

Leela Zero同樣也是依照AlphaGo Zero論文所獨立實做出來的軟體[10],而Minigo專案取得Google贊助的計算資源,透過大量計算資源得到品質還不錯的訓練網路資料。因此Leela Zero的團隊與Minigo的團隊基於雙方的經驗,討論參數的調整能帶來的改善,以及雙方訓練資料共享的可能性[11]

成績

Minigo的第二階段在CGOS上以somebot開頭的名稱參與19x19的對戰[12],排名最高的帳號為somebot-199b[13],取得約2600分的BayesElo成績[12]

相關連結

參考資料

註解

外部連結

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads