scikit-learn

来自维基百科,自由的百科全书

Scikit-learn

Scikit-learn(曾叫做scikits.learnsklearn)是用於Python程式語言自由並開源機器學習[2]。它包含了各種分類回歸聚類算法,包括多層感知器支持向量機隨機森林梯度提升k-平均聚類DBSCAN,它被設計協同於Python數值庫NumPy和和科學庫SciPy

快速預覽 原作者, 首次發布 ...
scikit-learn
Thumb
原作者David Cournapeau
首次發布2007年6月,​17年前​(2007-06
當前版本1.6.1[1]在維基數據編輯(2025年1月10日,3個月前)
原始碼庫 編輯維基數據鏈接
程式語言Python, Cython, C, C++
作業系統Linux, macOS, Windows
類型機器學習
許可協議三條款BSD許可證
網站scikit-learn.org
關閉

概述

scikit-learn計劃開始於scikits.learn,它是David Cournapeau英語David CournapeauGoogle編程之夏計劃。它的名字來源自成為「SciKit」(SciPy工具箱)的想法,即一個獨立開發和發行的第三方SciPy擴展[3]。最初的代碼庫被其他開發者重寫了。在2010年,來自法國羅康庫爾法國國家信息與自動化研究所的Fabian Pedregosa、Gael Varoquaux、Alexandre Gramfort和Vincent Michel,領導了這個項目並在2010年2月1日進行了首次公開發行[4]。在各種scikit中,scikit-learn和scikit-image英語scikit-image截至2012年11月 (2012-11)是「良好維護和流行的」[5]。Scikit-learn是在GitHub上最流行的機器學習庫之一[6]

實現

Scikit-learn主要用Python編寫的,並廣泛使用NumPy進行高性能線性代數和數組運算。此外,一些核心算法用Cython書寫來以提高性能。在某些情況下,用Python擴展出特定方法是不可能的;比如支持向量機,是通過用Cython包裝LIBSVM英語LIBSVM實現;邏輯斯諦回歸線性支持向量機,是通過對LIBLINEAR英語LIBLINEAR的類似的包裝實現的。

Scikit-learn與很多其他Python庫可以良好的集成起來,比如用於繪圖的matplotlibplotly英語plotly,用於陣列向量化的NumPy,用於數據幀的pandas,用於科學計算的SciPy等等。

有關工具

  • sklearn-onnx是將scikit-learn模型轉換成ONNX的工具[7]
  • SciKeras是對Keras模塊的scikit-learn兼容的包裝器[8]
  • skorch是包裝了PyTorch的scikit-learn兼容的神經網絡庫[9]

參見

引用

外部連結

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.