泰勒級數(又叫泰勒展開式,英文係Taylor Series)係將光滑函數展開為多項式嘅方法。其中一個好處係,容易做微積分。 定義 f ( x ) {\displaystyle f(x)} 喺參考點 x = a {\displaystyle x=a} 嘅泰勒展開式: f ( x ) = ∑ n = 0 ∞ f ( n ) ( a ) n ! ( x − a ) n = f ( a ) + f ′ ( a ) ( x − a ) + f ″ ( a ) 2 ! ( x − a ) 2 + f ( 3 ) ( a ) 3 ! ( x − a ) 3 + . . . {\displaystyle f(x)={\sum _{n=0}^{\infty }}{f^{(n)}(a) \over n!}(x-a)^{n}=f(a)+f'(a)(x-a)+{f''(a) \over 2!}(x-a)^{2}+{f^{(3)}(a) \over 3!}(x-a)^{3}+...} 當 a = 0 {\displaystyle a=0} 嗰陣,又叫麥克勞林級數。 Remove ads例子 e x = ∑ n = 0 ∞ x n n ! = 1 + x + x 2 2 ! + x 3 3 ! + x 4 4 ! + . . . {\displaystyle e^{x}={\sum _{n=0}^{\infty }}{x^{n} \over n!}=1+x+{x^{2} \over 2!}+{x^{3} \over 3!}+{x^{4} \over 4!}+...} cos ( x ) = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + . . . {\displaystyle \cos(x)={\sum _{n=0}^{\infty }}(-1)^{n}{x^{2n} \over (2n)!}=1-{x^{2} \over 2!}+{x^{4} \over 4!}-{x^{6} \over 6!}+...} sin ( x ) = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + . . . {\displaystyle \sin(x)={\sum _{n=0}^{\infty }}(-1)^{n}{x^{2n+1} \over (2n+1)!}=x-{x^{3} \over 3!}+{x^{5} \over 5!}-{x^{7} \over 7!}+...} Remove ads證明 假設一個函數可以寫做無限項嘅多項式: f ( x ) = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + . . . + a n x n + . . . {\displaystyle f(x)=a_{0}+a_{1}x+a_{2}x^{2}+a_{3}x^{3}+...+a_{n}x^{n}+...} f ( 0 ) = 0 ! a 0 {\displaystyle f(0)=0!\ a_{0}} 將函數微分1階: f ′ ( x ) = 1 a 1 + 2 a 2 x + 3 a 3 x 2 + 4 a 4 x 3 + . . . + n a n x n − 1 + . . . {\displaystyle f'(x)=1\ a_{1}+2\ a_{2}\ x+3\ a_{3}\ x^{2}+4\ a_{4}\ x^{3}+...+n\ a_{n}\ x^{n-1}+...} f ′ ( 0 ) = 1 ! a 1 {\displaystyle f'(0)=1!\ a_{1}} 2階微分: f ″ ( x ) = ( 2 × 1 ) a 2 + ( 3 × 2 ) a 3 x + ( 4 × 3 ) a 4 x 2 + ( 5 × 4 ) a 5 x 3 + . . . + [ n × ( n − 1 ) ] a n x n − 2 + . . . {\displaystyle f''(x)=(2\times 1)\ a_{2}+(3\times 2)\ a_{3}\ x+(4\times 3)\ a_{4}\ x^{2}+(5\times 4)\ a_{5}\ x^{3}+...+[n\times (n-1)]\ a_{n}\ x^{n-2}+...} f ″ ( 0 ) = 2 ! a 2 {\displaystyle f''(0)=2!\ a_{2}} 3階微分: f ( 3 ) ( x ) = P 3 3 a 3 + P 3 4 a 4 x + P 3 5 a 5 x 2 + P 3 6 a 6 x 3 + . . . + P 3 n a n x n − 3 + . . . {\displaystyle f^{(3)}(x)=P_{3}^{3}\ a_{3}\ +P_{3}^{4}\ a_{4}\ x+P_{3}^{5}\ a_{5}\ x^{2}+P_{3}^{6}\ a_{6}\ x^{3}+...+P_{3}^{n}\ a_{n}\ x^{n-3}+...} f ( 3 ) ( 0 ) = 3 ! a 3 {\displaystyle f^{(3)}(0)=3!\ a_{3}} k階微分: f ( k ) ( x ) = P k k a k + P k k + 1 a k + 1 x + P k k + 2 a k + 2 x 2 + P k k + 3 a k + 3 x 3 + . . . + P k n a n x n − k + . . . {\displaystyle f^{(k)}(x)=P_{k}^{k}\ a_{k}\ +P_{k}^{k+1}\ a_{k+1}\ x+P_{k}^{k+2}\ a_{k+2}\ x^{2}+P_{k}^{k+3}\ a_{k+3}\ x^{3}+...+P_{k}^{n}\ a_{n}\ x^{n-k}+...} f ( k ) ( 0 ) = k ! a k {\displaystyle f^{(k)}(0)=k!\ a_{k}} n階微分: f ( n ) ( x ) = P n n a n + P n n + 1 a n + 1 x + . . . {\displaystyle f^{(n)}(x)=P_{n}^{n}\ a_{n}+P_{n}^{n+1}\ a_{n+1}\ x+...} f ( n ) ( 0 ) = n ! a n {\displaystyle f^{(n)}(0)=n!\ a_{n}} 所以原函數 f ( x ) {\displaystyle f(x)} 每項嘅係數可以寫做: a k = f ( k ) ( 0 ) k ! , ( k = 0 , 1 , 2 , . . . , n , n + 1 , . . . ) {\displaystyle a_{k}={f^{(k)}(0) \over k!}\ ,\ (k=0,1,2,...,n,n+1,...)} 再配返每項嘅變數可以寫做: a k x k = f ( k ) ( 0 ) k ! x k , ( k = 0 , 1 , 2 , . . . , n , n + 1 , . . . ) {\displaystyle a_{k}\ x^{k}={f^{(k)}(0) \over k!}x^{k}\ ,\ (k=0,1,2,...,n,n+1,...)} 所以原函數可以寫做: f ( x ) = ∑ k = 0 ∞ a k x k = ∑ k = 0 ∞ f ( k ) ( 0 ) k ! x k {\displaystyle f(x)={\sum _{k=0}^{\infty }}a_{k}\ x^{k}={\sum _{k=0}^{\infty }}{f^{(k)}(0) \over k!}x^{k}} (麥克勞林級數) 另外,令 g ( x ) {\displaystyle g(x)} 係 f ( x ) {\displaystyle f(x)} 向右平移 a {\displaystyle a} 個單位: g ( x ) = f ( x − a ) = ∑ k = 0 ∞ a k ( x − a ) k = ∑ k = 0 ∞ f ( k ) ( a ) k ! ( x − a ) k {\displaystyle g(x)=f(x-a)={\sum _{k=0}^{\infty }}a_{k}\ (x-a)^{k}={\sum _{k=0}^{\infty }}{f^{(k)}(a) \over k!}(x-a)^{k}} (泰勒級數) Remove adsLoading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads