热门问题
时间线
聊天
视角
二階無限面體堆砌
来自维基百科,自由的百科全书
Remove ads
在幾何學中,二階無限面體堆砌(英語:order-2 apeirohedronal honeycomb)是一種三維空間的密鋪,由無限面體組成,每個頂點周圍皆有兩個無限面體,但由於所有頂點共面,因此,整個空間只需要二個無限面體就能完全密鋪,因此二階無限面體堆砌也可以視為一種二胞體。
Remove ads
二階正無限面體堆砌一共有三種:二階三角形鑲嵌堆砌、二階正方形鑲嵌堆砌以及二階六邊形鑲嵌堆砌,其在施萊夫利符號中用{p, q, 2}表示,其中p、q滿足等式[1]。它是一種能以有限個多面體完成的空間堆砌(密鋪),他可以被視為是第二種三維歐幾里得平面上的正多面體堆砌,但他其實是退化的結果。兩個正無限面體沿著面連接就足以填充整個空間無窮的大小,因為其面數、邊數皆為無限大,且具有180°的二面角,因為180°的二面角是完整空間360°的一半。
Remove ads
二階三角形鑲嵌堆砌
二階三角形鑲嵌堆砌是一種二階無限面體堆砌,由三角形鑲嵌堆砌而成,每個條稜周圍都有2個三角形鑲嵌,在施萊夫利符號中用 {3,6,2} 表示,其每個頂點都是2個三角形鑲嵌的公共頂點,因此頂點圖為六邊形二面體,在施萊夫利符號中用 {6,2} 表示。
二階正方形鑲嵌堆砌
二階正方形鑲嵌堆砌是一種二階無限面體堆砌,由正方形鑲嵌堆砌而成,每個條稜周圍都有2個正方形鑲嵌,在施萊夫利符號中用 {4,4,2} 表示,其每個頂點都是2個正方形鑲嵌的公共頂點,因此頂點圖為四邊形二面體,在施萊夫利符號中用 {4,2} 表示。
二階無限胞體堆砌
參見
- 三階無限面體堆砌 - 雙曲面密鋪
- 三階三角形鑲嵌蜂巢體
- 三階正方形鑲嵌蜂巢體
- 三階六邊形鑲嵌蜂巢體
- 四階無限面體堆砌 - 雙曲面密鋪
- 四階三角形鑲嵌蜂巢體
- 四階正方形鑲嵌蜂巢體
- 四階六邊形鑲嵌蜂巢體
參考文獻
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads