傑恩斯-卡明斯模型(Jaynes–Cummings model (JCM))是一個量子光學的理论模型。 這是一個描述雙態系統和量子化光腔(optical cavity)交互作用的模型,這種交互作用和光子的存在與否無關(在电磁辐射能造成光子自發性的放射與吸收)。它主要被運用在原子物理學、量子光學、固態量子信息電路的理論與實驗上。 此條目翻譯品質不佳,原文在en:Jaynes–Cummings model。 (2025年4月4日) 傑恩斯-卡明斯模型。圓圈內展示了光子的發射與吸收 公式 系统哈密頓量 H ^ = H ^ field + H ^ atom + H ^ int {\displaystyle {\hat {H}}={\hat {H}}_{\text{field}}+{\hat {H}}_{\text{atom}}+{\hat {H}}_{\text{int}}} 由自由場哈密頓量,原子激發態哈密頓量,JCM哈密頓量組成: H ^ field = ℏ ω c a ^ † a ^ H ^ atom = ℏ ω a σ ^ z 2 H ^ int = ℏ Ω 2 E ^ S ^ . {\displaystyle {\begin{array}{lcl}{\hat {H}}_{\text{field}}&=&\hbar \omega _{c}{\hat {a}}^{\dagger }{\hat {a}}\\{\hat {H}}_{\text{atom}}&=&\hbar \omega _{a}{\frac {{\hat {\sigma }}_{z}}{2}}\\{\hat {H}}_{\text{int}}&=&{\frac {\hbar \Omega }{2}}{\hat {E}}{\hat {S}}.\end{array}}} 為方便起見,设真空場能量為 0 {\displaystyle 0} . 其中: E ^ = a ^ + a ^ † {\displaystyle {\begin{smallmatrix}{\hat {E}}={\hat {a}}+{\hat {a}}^{\dagger }\end{smallmatrix}}} 場運算符,目的是把量化輻射場转化為玻色子的模型,另外雙態原子是能被三維布洛赫球面所描述的半自旋粒子 a ^ † {\displaystyle {\begin{smallmatrix}{\hat {a}}^{\dagger }\end{smallmatrix}}} 是玻色子的創生算符 a ^ {\displaystyle {\begin{smallmatrix}{\hat {a}}\end{smallmatrix}}} 是玻色子的湮滅算符 S ^ = σ ^ + + σ ^ − {\displaystyle {\begin{smallmatrix}{\hat {S}}={\hat {\sigma }}_{+}+{\hat {\sigma }}_{-}\end{smallmatrix}}} 是原子耦合區的偏振運算符 σ ^ + = | e ⟩ ⟨ g | {\displaystyle {\begin{smallmatrix}{\hat {\sigma }}_{+}=|e\rangle \langle g|\end{smallmatrix}}} 與 σ ^ − = | g ⟩ ⟨ e | {\displaystyle {\begin{smallmatrix}{\hat {\sigma }}_{-}=|g\rangle \langle e|\end{smallmatrix}}} 是原子的階梯算符 σ ^ z = | e ⟩ ⟨ e | − | g ⟩ ⟨ g | {\displaystyle {\begin{smallmatrix}{\hat {\sigma }}_{z}=|e\rangle \langle e|-|g\rangle \langle g|\end{smallmatrix}}} 是原子反轉運算符 ω a {\displaystyle {\begin{smallmatrix}\omega _{a}\end{smallmatrix}}} 是原子的躍遷頻率 ω c {\displaystyle {\begin{smallmatrix}\omega _{c}\end{smallmatrix}}} 是模型的角頻率 Remove adsJCM哈密頓量 通過把薛丁格繪景轉換為相互作用繪景(又名旋轉框架(rotating frame)) ,使得 H 0 = H ^ field + H ^ atom {\displaystyle {\begin{smallmatrix}H_{0}={\hat {H}}_{\text{field}}+{\hat {H}}_{\text{atom}}\end{smallmatrix}}} ,可以得到: H ^ int ( t ) = ℏ Ω 2 ( a ^ σ ^ − e − i ( ω c + ω a ) t + a ^ † σ ^ + e i ( ω c + ω a ) t + a ^ σ ^ + e i ( − ω c + ω a ) t + a ^ † σ ^ − e − i ( − ω c + ω a ) t ) . {\displaystyle {\hat {H}}_{\text{int}}(t)={\frac {\hbar \Omega }{2}}\left({\hat {a}}{\hat {\sigma }}_{-}e^{-i(\omega _{c}+\omega _{a})t}+{\hat {a}}^{\dagger }{\hat {\sigma }}_{+}e^{i(\omega _{c}+\omega _{a})t}+{\hat {a}}{\hat {\sigma }}_{+}e^{i(-\omega _{c}+\omega _{a})t}+{\hat {a}}^{\dagger }{\hat {\sigma }}_{-}e^{-i(-\omega _{c}+\omega _{a})t}\right).} 這個哈密頓量同時包含了兩個部分: ( ω c + ω a ) {\displaystyle {\begin{smallmatrix}(\omega _{c}+\omega _{a})\end{smallmatrix}}} 是快速震蕩, ( ω c − ω a ) {\displaystyle {\begin{smallmatrix}(\omega _{c}-\omega _{a})\end{smallmatrix}}} 是慢速震蕩。 為了求解這個方程,簡化模型是再所難免的。注意到,當 | ω c − ω a | ≪ ω c + ω a {\displaystyle {\begin{smallmatrix}|\omega _{c}-\omega _{a}|\ll \omega _{c}+\omega _{a}\end{smallmatrix}}} 的時候,快速振盪的 “反向旋轉”項(也就是快速震蕩項)可被忽略,這被稱為旋波近似。再將之轉換回薛丁格繪景,JCM哈密頓量就變成了: H ^ JC = ℏ ω c a ^ † a ^ + ℏ ω a σ ^ z 2 + ℏ Ω 2 ( a ^ σ ^ + + a ^ † σ ^ − ) . {\displaystyle {\hat {H}}_{\text{JC}}=\hbar \omega _{c}{\hat {a}}^{\dagger }{\hat {a}}+\hbar \omega _{a}{\frac {{\hat {\sigma }}_{z}}{2}}+{\frac {\hbar \Omega }{2}}\left({\hat {a}}{\hat {\sigma }}_{+}+{\hat {a}}^{\dagger }{\hat {\sigma }}_{-}\right).} 其中, ℏ Ω / 2 = d ( ω a / ℏ V ϵ 0 ) 1 / 2 {\displaystyle {\begin{smallmatrix}\hbar \Omega /2=d(\omega _{a}/\hbar V\epsilon _{0})^{1/2}\end{smallmatrix}}} 是原子場的耦合常數, d {\displaystyle {\begin{smallmatrix}d\end{smallmatrix}}} 是原子躍遷時刻, V {\displaystyle {\begin{smallmatrix}V\end{smallmatrix}}} 是腔模的體積。 Remove ads本徵態 一般情況下,將哈密頓量拆分為2部分有助於對其進行求解: H ^ JC = H ^ I + H ^ I I , {\displaystyle {\hat {H}}_{\text{JC}}={\hat {H}}_{I}+{\hat {H}}_{II},} 其中, H ^ I = ℏ ω c ( a ^ † a ^ + σ ^ z 2 ) H ^ I I = ℏ δ σ ^ z 2 + ℏ Ω 2 ( a ^ σ ^ + + a ^ † σ ^ − ) {\displaystyle {\begin{array}{lcl}{\hat {H}}_{I}&=&\hbar \omega _{c}\left({\hat {a}}^{\dagger }{\hat {a}}+{\frac {{\hat {\sigma }}_{z}}{2}}\right)\\{\hat {H}}_{II}&=&\hbar \delta {\frac {{\hat {\sigma }}_{z}}{2}}+{\frac {\hbar \Omega }{2}}\left({\hat {a}}{\hat {\sigma }}_{+}+{\hat {a}}^{\dagger }{\hat {\sigma }}_{-}\right)\end{array}}} δ = ω a − ω c {\displaystyle {\begin{smallmatrix}\delta =\omega _{a}-\omega _{c}\end{smallmatrix}}} 稱之為場與雙態系統的失諧量(頻率)。為了更好地求解哈密頓量,把 H ^ I {\displaystyle {\begin{smallmatrix}{\begin{smallmatrix}{\hat {H}}_{I}\end{smallmatrix}}\end{smallmatrix}}} 的本徵態轉換成張量積 | n , g ⟩ , | n , e ⟩ {\displaystyle {\begin{smallmatrix}|n,g\rangle ,|n,e\rangle \end{smallmatrix}}} ( n ∈ N {\displaystyle {\begin{smallmatrix}n\in \mathbb {N} \end{smallmatrix}}} ,表示模型中輻射量子的數量。) 對位任意正整數n,狀態 | ψ 1 n ⟩ := | n , e ⟩ {\displaystyle {\begin{smallmatrix}|\psi _{1n}\rangle :=|n,e\rangle \end{smallmatrix}}} 與狀態 | ψ 2 n ⟩ := | n + 1 , g ⟩ {\displaystyle {\begin{smallmatrix}|\psi _{2n}\rangle :=|n+1,g\rangle \end{smallmatrix}}} 會退化為 H ^ I {\displaystyle {\begin{smallmatrix}{\hat {H}}_{I}\end{smallmatrix}}} , H ^ JC {\displaystyle {\begin{smallmatrix}{\hat {H}}_{\text{JC}}\end{smallmatrix}}} 足以在子空間 span { | ψ 1 n ⟩ , | ψ 2 n ⟩ } {\displaystyle {\begin{smallmatrix}{\text{span}}\{|\psi _{1n}\rangle ,|\psi _{2n}\rangle \}\end{smallmatrix}}} 對角化。 H ^ JC {\displaystyle {\begin{smallmatrix}{\hat {H}}_{\text{JC}}\end{smallmatrix}}} 的元素屬於 H i j ( n ) := ⟨ ψ i n | H ^ JC | ψ j n ⟩ {\displaystyle {\begin{smallmatrix}{H}_{ij}^{(n)}:=\langle \psi _{in}|{\hat {H}}_{\text{JC}}|\psi _{jn}\rangle \end{smallmatrix}}} 的子空間,表示為: H ( n ) = ℏ ( n ω c + ω a 2 Ω 2 n + 1 Ω 2 n + 1 ( n + 1 ) ω c − ω a 2 ) {\displaystyle H^{(n)}=\hbar {\begin{pmatrix}n\omega _{c}+{\frac {\omega _{a}}{2}}&{\frac {\Omega }{2}}{\sqrt {n+1}}\\[8pt]{\frac {\Omega }{2}}{\sqrt {n+1}}&(n+1)\omega _{c}-{\frac {\omega _{a}}{2}}\end{pmatrix}}} 對於任意正整數n,能量本徵態 H ( n ) {\textstyle {\begin{smallmatrix}H^{(n)}\end{smallmatrix}}} 為: E ± ( n ) = ℏ ω c ( n + 1 2 ) ± 1 2 ℏ Ω n ( δ ) , {\displaystyle E_{\pm }(n)=\hbar \omega _{c}\left(n+{\frac {1}{2}}\right)\pm {\frac {1}{2}}\hbar \Omega _{n}(\delta ),} 其中, Ω n ( δ ) = δ 2 + Ω 2 ( n + 1 ) {\displaystyle {\begin{smallmatrix}\Omega _{n}(\delta )={\sqrt {\delta ^{2}+\Omega ^{2}(n+1)}}\end{smallmatrix}}} 是拉比頻率特殊的失諧參數。 含能量本徵態 | n , ± ⟩ {\displaystyle {\begin{smallmatrix}|n,\pm \rangle ~\end{smallmatrix}}} 的特徵值是: | n , + ⟩ = cos ( α n 2 ) | ψ 1 n ⟩ + sin ( α n 2 ) | ψ 2 n ⟩ {\displaystyle |n,+\rangle =\cos \left({\frac {\alpha _{n}}{2}}\right)|\psi _{1n}\rangle +\sin \left({\frac {\alpha _{n}}{2}}\right)|\psi _{2n}\rangle } | n , − ⟩ = − sin ( α n 2 ) | ψ 1 n ⟩ + cos ( α n 2 ) | ψ 2 n ⟩ {\displaystyle |n,-\rangle =-\sin \left({\frac {\alpha _{n}}{2}}\right)|\psi _{1n}\rangle +\cos \left({\frac {\alpha _{n}}{2}}\right)|\psi _{2n}\rangle } 其中, ∠ α n = tan − 1 ( Ω n + 1 δ ) {\displaystyle {\begin{smallmatrix}\angle \alpha _{n}=\tan ^{-1}\left({\frac {\Omega {\sqrt {n+1}}}{\delta }}\right)\end{smallmatrix}}} Remove ads薛丁格繪景動量 為了得到動量的一般情況。 首先考慮一個場疊加態的初態 | ψ field ( 0 ) ⟩ = ∑ n C n | n ⟩ {\displaystyle {\begin{smallmatrix}~|\psi _{\text{field}}(0)\rangle =\sum _{n}{C_{n}|n\rangle }~\end{smallmatrix}}} ,若置一激發態原子于場內,則系統初態為: | ψ tot ( 0 ) ⟩ = ∑ n C n [ cos ( α n 2 ) | n , + ⟩ − sin ( α n 2 ) | n , − ⟩ ] . {\displaystyle |\psi _{\text{tot}}(0)\rangle =\sum _{n}C_{n}\left[\cos \left({\frac {\alpha _{n}}{2}}\right)|n,+\rangle -\sin \left({\frac {\alpha _{n}}{2}}\right)|n,-\rangle \right].} 其中 | n , ± ⟩ {\displaystyle {\begin{smallmatrix}~|n,\pm \rangle ~\end{smallmatrix}}} 是該系統的定態, 含時狀態向量是: | ψ tot ( t ) ⟩ = e − i H ^ JC t / ℏ | ψ tot ( 0 ) ⟩ = ∑ n C n [ cos ( α n 2 ) | n , + ⟩ e − i E + ( n ) t / ℏ − sin ( α n 2 ) | n , − ⟩ e − i E − ( n ) t / ℏ ] , t > 0 {\displaystyle |\psi _{\text{tot}}(t)\rangle =e^{-i{\hat {H}}_{\text{JC}}t/\hbar }|\psi _{\text{tot}}(0)\rangle =\sum _{n}C_{n}\left[\cos \left({\frac {\alpha _{n}}{2}}\right)|n,+\rangle e^{-iE_{+}(n)t/\hbar }-\sin \left({\frac {\alpha _{n}}{2}}\right)|n,-\rangle e^{-iE_{-}(n)t/\hbar }\right],t>0} Remove ads相互作用繪景動量 可以直接通過海森堡記法(Heisenberg notation)來確定么正演化算符(unitary evolution operator) :[1] U ^ ( t ) = e − i H ^ JC t / ℏ = ( e − i ω c t ( a ^ † a ^ + 1 2 ) ( cos t φ ^ + g 2 − i δ / 2 sin t φ ^ + g 2 φ ^ + g 2 ) − i g e − i ω c t ( a ^ † a ^ + 1 2 ) sin t φ ^ + g 2 φ ^ + g 2 a ^ − i g e − i ω c t ( a ^ † a ^ − 1 2 ) sin t φ ^ φ ^ a ^ † e − i ω c t ( a ^ † a ^ − 1 2 ) ( cos t φ ^ + i δ / 2 sin t φ ^ φ ^ ) ) {\displaystyle {\begin{matrix}{\begin{aligned}{\hat {U}}(t)&=e^{-i{\hat {H}}_{\text{JC}}t/\hbar }\\&={\begin{pmatrix}e^{-i\omega _{c}t({\hat {a}}^{\dagger }{\hat {a}}+{\frac {1}{2}})}\left(\cos t{\sqrt {{\hat {\varphi }}+g^{2}}}-i\delta /2{\frac {\sin t{\sqrt {{\hat {\varphi }}+g^{2}}}}{\sqrt {{\hat {\varphi }}+g^{2}}}}\right)&-ige^{-i\omega _{c}t({\hat {a}}^{\dagger }{\hat {a}}+{\frac {1}{2}})}{\frac {\sin t{\sqrt {{\hat {\varphi }}+g^{2}}}}{\sqrt {{\hat {\varphi }}+g^{2}}}}\,{\hat {a}}\\-ige^{-i\omega _{c}t({\hat {a}}^{\dagger }{\hat {a}}-{\frac {1}{2}})}{\frac {\sin t{\sqrt {\hat {\varphi }}}}{\sqrt {\hat {\varphi }}}}{\hat {a}}^{\dagger }&e^{-i\omega _{c}t({\hat {a}}^{\dagger }{\hat {a}}-{\frac {1}{2}})}\left(\cos t{\sqrt {\hat {\varphi }}}+i\delta /2{\frac {\sin t{\sqrt {\hat {\varphi }}}}{\sqrt {\hat {\varphi }}}}\right)\end{pmatrix}}\end{aligned}}\end{matrix}}} 其中,定義算符 φ ^ {\displaystyle ~{\hat {\varphi }}~} 為 φ ^ = g 2 a ^ † a ^ + δ 2 / 4 {\displaystyle {\hat {\varphi }}=g^{2}{\hat {a}}^{\dagger }{\hat {a}}+\delta ^{2}/4} U ^ {\displaystyle ~{\hat {U}}~} 的么正(unitary )被恆等定義: sin t φ ^ + g 2 φ ^ + g 2 a ^ = a ^ sin t φ ^ φ ^ , {\displaystyle {\frac {\sin t\,{\sqrt {{\hat {\varphi }}+g^{2}}}}{\sqrt {{\hat {\varphi }}+g^{2}}}}\;{\hat {a}}={\hat {a}}\;{\frac {\sin t\,{\sqrt {\hat {\varphi }}}}{\sqrt {\hat {\varphi }}}},} cos t φ ^ + g 2 a ^ = a ^ cos t φ ^ , {\displaystyle \cos t\,{\sqrt {{\hat {\varphi }}+g^{2}}}\;{\hat {a}}={\hat {a}}\;\cos t{\sqrt {\hat {\varphi }}},} 么正算符可以計算被密度矩陣 ρ ^ ( t ) {\displaystyle ~{\hat {\rho }}(t)~} 所描述的含時系統狀態的演變,么正算符包含了所有可觀測量。給定初態 ρ ^ ( 0 ) {\displaystyle ~{\hat {\rho }}(0)~} ,則有: ρ ^ ( t ) = U ^ † ( t ) ρ ^ ( 0 ) U ^ ( t ) {\displaystyle {\hat {\rho }}(t)={\hat {U}}^{\dagger }(t){\hat {\rho }}(0){\hat {U}}(t)} , ⟨ Θ ^ ⟩ t = Tr [ ρ ^ ( t ) Θ ^ ] {\displaystyle \langle {\hat {\Theta }}\rangle _{t}={\text{Tr}}[{\hat {\rho }}(t){\hat {\Theta }}]} , 其中, Θ ^ {\displaystyle ~{\hat {\Theta }}~} 是表示可觀測量的算符。 Remove ads量子震盪的崩塌和復興 原子反轉的量子震盪圖像(二次反比失諧參數 a = ( δ / ( 2 g ) ) 2 = 40 {\displaystyle {\begin{smallmatrix}a=(\delta /(2g))^{2}=40\end{smallmatrix}}} , 其中 δ {\displaystyle \delta } 是失諧參數),基於 A.A. Karatsuba 和 E.A. Karatsuba 取得的基本公式[2]。 Remove ads參考資料Loading content...參考文獻Loading content...延伸閱讀Loading content...Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads