热门问题
时间线
聊天
视角

割圜密率捷法

来自维基百科,自由的百科全书

割圜密率捷法
Remove ads

割圜密率捷法,清代数学家明安图积三十年之功写成;后子明新、弟子陳際新根据明安图遗稿整理、推究于乾隆三十九年(1774年)出版,时明安图已去世十年。[1]

Thumb
割圜密率捷法卷一

《割圜密率捷法》根据连比例三角形的性质,详细推导圆周率的九个无穷级数。中算史家李儼说“数与形的结合,堪与笛卡尔所创立的解析几何媲美”[2]

内容

卷一 步法

  • 圆径求周

+…………

可以改写成 [3]

此展开式被清代数学家称为“杜氏第一术”,出自牛顿

  • 弧背求正弦

杜氏九术之二,出自格列高里:[4].

弧背为a,半径为r,通弦为c

……

  • 弧背求正矢

“杜氏九术”之三,出自格列高里

…………

  • 弧背求通弦

+……

  • 弧背求矢

+…………

  • 通弦求弧背

出自明安图:

[5]

  • 正弦求弧背

出自明安图

[6]

  • 正矢求弧背

[7]

  • 矢求弧背

[8]

  • 余弧求正弦正矢


  • 余矢余弦求本弧
    借弧背求正弦余弦
    借正弦余弦求弧背

卷二 用法

  • 角度求八线
  • 直线三角形边角相求
  • 弧线三角形边角相求

卷三 法解上

Thumb
分弧通弦率数求全弧通弦率图解
Thumb
明安图镇此书中最先运用卡塔兰数
Thumb
弧背求通弦图解
  • 分弧通弦率数求全弧通弦率法解
  • 弧背求通弦法解
  • 通弦求弧背法解
  • 弧背正弦相求法解

卷四 法解下

  • 分弧正矢率数求全弧正矢率数法解
  • 弧背求正矢法解
  • 正矢求弧背法解
  • 弧矢相求法解
  • 弧矢弦正余互用法解
  • 借弧背求正弦余弦法解
  • 借正弦余弦求弧背法解
Remove ads

注释

Loading content...

参考文献

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads