热门问题
时间线
聊天
视角
同調球面
来自维基百科,自由的百科全书
Remove ads
數學的代數拓撲學中,同調球面是n維流形X,具有n-球面的同調群。在此n ≥ 1是整數。換言之,
- H0(X,Z) = Z = Hn(X,Z)
- 對所有其他i,Hi(X,Z) = {0} .
因此X是一個連通空間,僅有一個非零的高階貝蒂數bn(除了 b0=1 外)。
當n > 1時,雖然H1(X,Z) = {0},不過並不表示X是單連通的,即X的基本群未必是平凡的,只表示其基本群是完滿群。(參看Hurewicz定理)
有理同調球面的定義與上述類似,不過用有理係數的同調群代替。
龐加萊同調球面
龐加萊同調球面(又稱為龐加萊十二面體空間)是同調球面的一個例子。龐加萊同調球面是球面3-流形,因此基本群是有限的。同調3-球面中,除了3-球面之外,就只有龐加萊同調球面有有限基本群。它的基本群稱為binary icosahedral group,這個群的目是120。
龐加萊在1900年猜想使用同調群就可以分辨3-流形是否3-球面,1904年他提出了這個反例,並引入了基本群概念證明他的反例不是球面,又將原來的猜想修改為龐加萊猜想。
龐加萊同調球面的一個簡單構造法是使用正十二面體。將正十二面體的每個面與相對的另一面等同,將兩個面用順時針方向的最小「扭轉」重合。這樣黏合後得出的是閉3-流形。(參看用相似構造法及較大的「扭轉」而成的Seifert–Weber space,得出的是一個雙曲3-流形。)
另一個得出龐加萊同調球面的方法,是用商空間SO(3)/I,此處 I 是二十面體群,就是正二十面體和正十二面體的旋轉對稱群,同構於交錯群A5。更直觀地說,龐加萊同調球面就是正二十面體在三維歐幾里得空間中,所有可從幾何區別的位置所組成的空間。
性質
二重懸垂定理指一個同調球面的二重懸垂是一個拓撲球面。
應用
若A是一個不同胚於3-球面的同調3-球面,則A的懸垂是一個4維同調流形,卻不是拓撲流形。A的二重懸垂同胚於5-球面,但是從A的三角剖分誘導出來的三角剖分不是分片線性流形。換言之,這給出了一個有限單純複形例子,是拓撲流形,但不是分片線性流形,
Galewski-Stern證明了任何至少5維的(無邊)緊流形都同胚於某單純複形,若且唯若存在一個同調3-流形Σ,其Rokhlin不變量是1,使得它與自身的連通和Σ#Σ包圍了一個光滑零調(acyclic)4-流形。2013年,Ciprian Manolescu證明了不存在這樣的同調3-流形Σ。[1]因此存在5-流形不同胚於單純複形。特別地,Galewski-Stern原來給出的例子是不可三角剖分的。[2]
Remove ads
參考
參看
外部連結
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads