热门问题
时间线
聊天
视角

塞迈雷迪·安德烈

匈牙利数学家 来自维基百科,自由的百科全书

塞迈雷迪·安德烈
Remove ads

塞迈雷迪·安德烈匈牙利語Szemerédi Endre,1940年8月21日)是一名匈牙利数学家,他主要的研究领域为组合数学理论计算机科学。他自从1986年以来一旦担任美国罗格斯大学计算机科学教授。

事实速览 塞迈雷迪·安德烈Szemerédi Endre, 出生 ...
Remove ads

生平

他生于布达佩斯,先后毕业于匈牙利的羅蘭大學与俄罗斯的莫斯科国立大学。他的博士导师为伊斯拉埃爾·蓋爾范德

研究与成就

塞邁雷迪在離散數學理論電腦科學算術組合英语Arithmetic combinatorics組合幾何方面總共發表了超過200篇學術論文。其中,在1975年,他證明了艾狄胥·帕爾圖蘭·帕爾的著名猜想:若一個正整數序列有正的上密度,則具有任意長的等差數列。這條定理現在以他為名,稱為塞邁雷迪定理。證明過程當中,他引入了塞邁雷迪正則性引理。引理對於圖的性質檢驗英语property testing圖極限理論有重要應用。

得名自塞邁雷迪的還有重合幾何塞邁雷迪-特羅特定理圖論豪伊瑙爾-塞邁雷迪定理英语Hajnal–Szemerédi theorem魯紹-塞邁雷迪問題英语Ruzsa–Szemerédi problem奧伊陶伊·米克洛什英语Miklós Ajtai和塞邁雷迪證明了拐角定理英语corners theorem,是邁向塞邁雷迪定理高維推廣的重要一步。 塞邁雷迪與奧伊陶伊和科姆洛什·亞諾什英语János Komlós合作,證明了拉姆齊數R(3,t)的上界ct2/log t,並構造了深度最優的排序網絡英语Sorting network。此外,塞邁雷迪與奧伊陶伊、瓦茨拉夫·赫瓦塔爾英语Václav Chvátal蒙提·紐邦英语Monty Newborn合作證明了交叉數不等式,即若一幅恰有n個頂點和m條邊,且m > 4n,則將其畫在平面上時,必有至少m3 / 64n2交叉

Remove ads

荣誉

1987年他成为匈牙利科学院院士;2010年成为美国国家科学院院士。他也是普林斯顿高等研究院的成员。

2010年6月,他被布拉格查理大学授予荣誉博士学位[1]

2012年3月21日,他获得挪威科学与文学院授予的阿贝尔奖,“以表彰其在离散数学理论计算机科学方面的杰出贡献,以及对堆垒数论遍历理论产生的深远影响。”[2][3]

参考资料

外部链接

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads