热门问题
时间线
聊天
视角
条件独立
来自维基百科,自由的百科全书
Remove ads
在概率论和統計學中,两事件R 和B 在给定的另一事件Y 发生时条件独立,類似於統計獨立性,就是指当事件Y 发生时,R 发生与否和B 发生与否就条件概率分布而言是独立的。换句话讲,R 和B 在给定Y 发生时条件独立,当且仅当已知Y 发生时,知道R 发生与否无助于知道B 发生与否,同样知道B 发生与否也无助于知道R 发生与否。
![]() | 此條目可参照外語維基百科相應條目来扩充。 (2016年4月13日) |
定義

但给定Y不发生时,它们不是条件独立的,这是因为 :
R和B在给定Y发生时条件独立,用概率论的标准记号表示为
也可以等价地表示为
因为当事件Y发生时,R发生与否和B发生与否就条件概率分布而言是独立的。
两个随机变量X和Y在给定第三个随机变量Z的情况下条件独立当且仅当它们在给定Z时的条件概率分布互相独立,也就是说,给定Z的任一值,X的概率分布和Y的值无关,Y的概率分布也和X的值无关。
Remove ads
法则
因這些推论在任何機率空間中都成立,因此也对所有变量关于另一变量的条件概率分布成立,只需考慮相应子空间即可。譬如說也就意味着。
注:位於算式下方的逗號意为“和”。
Remove ads
證明:
- (的定义)
- (对B积分以消去B)
同理可证X和B條件獨立。
Remove ads
證明:
- 藉由定義
- 由於分解的屬性,
- 結合兩個等式得,其中確認 第二個條件可以類似地被證明。
Remove ads
註釋
參考資料
參見
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads