热门问题
时间线
聊天
视角
梯度消失问题
来自维基百科,自由的百科全书
Remove ads
梯度消失问题(Vanishing gradient problem)是一种机器学习中的难题,出現在以梯度下降法和反向传播训练人工神經網路的時候。在每次訓練的迭代中,神经网路权重的更新值与误差函数的偏導數成比例,然而在某些情况下,梯度值会几乎消失,使得权重无法得到有效更新,甚至神經網路可能完全无法继续训练。舉個例子來說明問題起因,一個传统的激勵函数如双曲正切函数,其梯度值在 (-1, 1)范围内,反向传播以链式法则来计算梯度。
![]() | 此條目可参照英語維基百科相應條目来扩充。 |
這樣做的效果,相当于在n層網路中,将n个這些小数字相乘來計算“前端”層的梯度,这就使梯度(误差信号)随着n呈指數遞減,导致前端層的訓練非常緩慢。
反向傳播使研究人員從頭開始訓練監督式深度人工神經網路,最初收效甚微。 1991年賽普·霍克賴特(Hochreiter)的畢業論文[1][2]正式確認了“梯度消失問題”失敗的原因。梯度消失問題不僅影響多層前饋網絡,[3]還影響循環網路。[4]循環網路是通過將前饋網路深度展開來訓練,在網路處理的輸入序列的每個時間步驟中,都會產生一個新的層。
當所使用的激勵函數之導數可以取較大值時,則可能會遇到相關的梯度爆炸問題(exploding gradient problem)。
Remove ads
解決方案
參考文獻
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads