磁链方程:
![{\displaystyle \left[{\begin{array}{*{20}c}{{\mathbf {\Psi } }_{abc}}\\{{\mathbf {\Psi } }_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf {L} }_{SS}}&{{\mathbf {L} }_{SR}}\\{{\mathbf {L} }_{RS}}&{{\mathbf {L} }_{RR}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf {i} }_{abc}}\\{{\mathbf {i} }_{fDQ}}\\\end{array}}\right]}](//wikimedia.org/api/rest_v1/media/math/render/svg/e3082ab58d5960db03ce9a599186fed5fdb8b9d6)
上式中的电感系数矩阵
事实上都含有随时间变化的角度参数[1],使得方程求解困难。
现对等式两边同时左乘
,其中
为三阶单位矩阵。方程化为:
![{\displaystyle \left[{\begin{array}{*{20}c}{{\mathbf {\Psi } }_{dq0}}\\{{\mathbf {\Psi } }_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{\mathbf {P} }&{}\\{}&{\mathbf {U} }\\\end{array}}\right]\left[{\begin{array}{*{20}c}{{\mathbf {L} }_{SS}}&{{\mathbf {L} }_{SR}}\\{{\mathbf {L} }_{RS}}&{{\mathbf {L} }_{RR}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{{\mathbf {P} }^{-1}}&{}\\{}&{\mathbf {U} }\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf {i} }_{abc}}\\{{\mathbf {i} }_{fDQ}}\\\end{array}}\right]}](//wikimedia.org/api/rest_v1/media/math/render/svg/5d9b4e3ae27b9ae490ae4f54cf60f428586129e6)
![{\displaystyle \left[{\begin{array}{*{20}c}{{\mathbf {\Psi } }_{dq0}}\\{{\mathbf {\Psi } }_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf {PL} }_{SS}{\mathbf {P} }^{-1}}&{{\mathbf {PL} }_{SR}}\\{{\mathbf {L} }_{RS}{\mathbf {P} }^{-1}}&{{\mathbf {L} }_{RR}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf {i} }_{dq0}}\\{{\mathbf {i} }_{fDQ}}\\\end{array}}\right]}](//wikimedia.org/api/rest_v1/media/math/render/svg/e199174f7ee7601d08f8cf72dd7d401960aec01c)
其中
。
① 变换后的电感系数都变为常数,可以假想dd绕组,qq绕组是固定在转子上的,相对转子静止。
② 派克变换阵对定子自感矩阵
起到了对角化的作用,并消去了其中的角度变量。
为其特征根。
③ 变换后定子和转子间的互感系数不对称,这是由于派克变换的矩阵不是正交矩阵。
④
为直轴同步电感系数,其值相当于当励磁绕组开路,定子合成磁势产生单纯直轴磁场时,任意一相定子绕组的自感系数。