统计学习理论

来自维基百科,自由的百科全书

统计学习理论

统计学习理论(英語:Statistical learning theory),一種機器學習的架構,根據統計學泛函分析(Functional Analysis)而建立。統計學習理論基於資料(data),找出預測性函數,之後解決問題。支持向量机(Support Vector Machine)的理論基礎來自於統計學習理論。

形式定义

为所有可能的输入组成的向量空间, 为所有可能的输出组成的向量空间。统计学习理论认为,积空间上存在某个未知的概率分布。训练集由这个概率分布中的个样例构成,并用表示。每个都是训练数据的一个输入向量, 而则是对应的输出向量。

损失函数

损失函数的选择是机器学习算法所选的函数中的决定性因素。 损失函数也影响着算法的收敛速率。损失函数的凸性也十分重要。[1]

根据问题是回归问题还是分类问题,我们可以使用不同的损失函数。

回归问题

回归问题中最常用的损失函数是平方损失函数(也被称为L2-范数)。类似的损失函数也被用在普通最小二乘回归。其形式是:

另一个常见的损失函数是绝对值范数(L1-范数):

分类问题

某种程度上说0-1指示函数是分类问题中最自然的损失函数。它在预测结果与真实结果相同时取0,相异时取1。对于的二分类问题,这可以表示为:

其中单位阶跃函数

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.