连续统

来自维基百科,自由的百科全书

連續統(英語:continuum)在數學概念中是指,在實數集裡實數可以連續變動,也就是說,实数集是個連續統。[註 1][註 2]

有序集

集合論中,連續統是一個擁有多於一個元素的線性序集,而且其序滿足如下性質[註 3]

  1. 稠密:在任意兩個元素之間存在第三個元素
  2. 無洞:有上界的非空子集一定有上確界

實數集即為連續統的例子;實際上它是連續統的原型。以下是連續統的幾個例子:

  1. 序結構與實數集同構序同構)的集合,例如實數集裡的任何開區間
  2. 擴展的實數軸,以及序同構於它的,比如單位區間
  3. 實的半開半閉區間如 (0,1] 等,以及其序同構。
  4. 拓扑學中有一種比實數線還要長的「長直線
  5. 非標準分析中的超實數

連續統的基數

康托的連續統假設有時會被敍述成「在連續統的基數自然數的基數之間不存在任何基数」,這裡的「連續統」指的是實數集;連續統的基數即特指實數集的基數。

拓撲學

在點集拓撲學中,一個連續統是指任何非空的緊緻連通度量空間[註 4]

按照以上定義,一個單點集也是連續統。擁有多於一個點的連續統稱為非退化的連續統;由連通性和豪斯多夫性質,可知它一定含有無窮個點。連續統理論即是拓撲學中研究拓撲連續統的分支。其中一個有趣的問題是不可分解連續統的存在性:

  • 是否存在這樣的連續統 C ,它可以寫成兩個連續統的並集,且這兩個都是 C 的真子集?

答案是肯定的,第一個例子由魯伊茲·布勞威爾給出[1]

注释

外部連結

參考

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.