Втори́чное квантова́ние (каноническое квантование)[1] — метод описания многочастичных квантовомеханических систем. Наиболее часто этот метод применяется для задач квантовой теории поля и в многочастичных задачах физики конденсированных сред.
Описание
Предположим, что существует классификация всех возможных состояний каждой частицы или квазичастицы в рассматриваемой системе. Обозначим состояния частицы как . Тогда любое возможное состояние системы описывается набором чисел частиц (чисел заполнения) в каждом из этих состояний . Суть метода вторичного квантования в том, что вместо волновых функций частиц в координатном или в импульсном представлении вводятся волновые функции в представлении чисел заполнения различных состояний одной частицы. Достоинство метода вторичного квантования в том, что он позволяет единообразно описывать системы с различным числом частиц, как с конечным фиксированным (в задачах физики конденсированных сред), так и с переменным, потенциально бесконечным (в задачах КТП). Переходы между различными состояниями (например, из состояния в состояние ) одной частицы при этом описываются как уменьшение числа заполнения, соответствующего одной волновой функции на единицу , и увеличение числа заполнения другого состояния на единицу . Вероятности этих процессов зависят не только от элементарной вероятности перехода, но и от чисел заполнения, участвующих в процессе состояний.
Статистика Бозе — Эйнштейна
Для частиц, подчиняющихся статистике Бозе — Эйнштейна, вероятность перехода из состояния в состояние есть , где — элементарная вероятность, рассчитываемая стандартными методами квантовой механики. Операторы, изменяющие числа заполнения состояний на единицу, работают так же как операторы рождения и уничтожения в задаче об одномерном гармоническом осцилляторе:
где квадратные скобки означают коммутатор, а — символ Кронекера.
Оператор рождения по определению представляет собой матрицу с единственным отличным от нуля элементом:[2]
- .
Оператор рождения так называется потому, что он увеличивает на 1 число частиц в i-м состоянии:
Оператор уничтожения также является матрицей с единственным отличным от нуля элементом:
- .
Оператор уничтожения так называется потому, что он уменьшает на 1 число частиц в i-м состоянии:
Статистика Ферми-Дирака
Для частиц, подчиняющихся статистике Ферми — Дирака, вероятность перехода из состояния в состояние есть , где — элементарная вероятность, рассчитываемая стандартными методами квантовой механики, а могут принимать значения только . Для фермионов используются другие операторы, которые удовлетворяют антикоммутационным соотношениям:
Оператор рождения по определению представляет собой матрицу с единственным отличным от нуля элементом:[3]
- .
Оператор рождения так называется потому, что он увеличивает c 0 до 1 число частиц в i-м состоянии:
Оператор уничтожения также является матрицей с единственным отличным от нуля элементом:
- .
Оператор уничтожения так называется потому, что он уменьшает на 1 число частиц в i-м состоянии:
Применения
Задачи по переходам квантовых частиц с различных состояний, физика лазеров, теория комбинационного рассеяния света, физика твердого тела, теория турбулентности жидкости, газа, плазмы[4].
См. также
Примечания
Литература
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.