Loading AI tools
partie contenant tout élément dont la distance à un certain point est inférieure à un certain rayon De Wikipédia, l'encyclopédie libre
En topologie, une boule est un type de voisinage particulier dans un espace métrique. Le nom évoque, à juste titre, la boule solide dans l'espace usuel à trois dimensions, mais la notion se généralise entre autres à des espaces de dimension plus grande (ou plus petite) ou encore de norme non euclidienne. Dans ce cas, une boule peut ne pas être « ronde » au sens usuel du terme.
Dans l'espace usuel comme dans n'importe quel espace métrique :
Dans un espace vectoriel normé, la boule unité ouverte est la boule ouverte centrée à l'origine et de rayon 1 (de même, la boule unité fermée est la boule fermée ).
Les boules d'un plan euclidien sont aussi appelées des disques[1].
Remarque : la définition des boules peut être étendue aux espaces pseudométriques qui généralisent la notion d'espace métrique.
Dans l'espace à deux dimensions , pour les trois normes qui suivent, les boules de rayon 1 correspondantes ont des formes différentes.
Dans un espace vectoriel normé, la distance définie par est compatible avec la structure d'espace vectoriel : la distance est invariante par translation et une homothétie de rapport multiplie la distance par . Ainsi toutes les boules ouvertes (resp. fermées) de rayons strictement positifs sont semblables par translation et homothétie, et toute boule est symétrique par rapport à son centre[2].
Sur un espace vectoriel normé réel ou complexe, on peut définir la notion de segment et donc d'ensemble convexe. À l'aide de l'inégalité triangulaire on montre que les boules sont convexes[3].
Dans un espace vectoriel réel normé, l'intérieur d'une boule fermée est la boule ouverte de même centre et de même rayon, et l'adhérence d'une boule ouverte non vide est la boule fermée correspondante (par conséquent, la frontière d'une boule non vide est la sphère correspondante). Dans un espace métrique quelconque on a seulement :
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.