أفضل الأسئلة
الجدول الزمني
الدردشة
السياق
رباعي دائري
الرباعي الدائري هو رباعي تقبل رؤوسه الوقوع على محيط دائرة واحدة من ويكيبيديا، الموسوعة الحرة
Remove ads
في الهندسة الإقليدية، الرُّباعيُّ الدَّائرِيُّ أو رباعي الأضلاع الدائري،(1) هو مُضلَّعٌ رُباعيّ تُوجَدُ دائرةٌ تمرُّ بجميعِ رؤوسه.[ِ 1][1][2][3] تُسمَّى الدائرة المارة برؤوس الرباعي «الدائرة المحيطة» ويُقال عن أي نقاطٍ تقعُ عليها: نقاط مشتركة بدائرة. غالباً ما يُصنّف الرباعي الدائري على أنه مُحدَّب، إلا أنه قد يُصنّف أيضاً على أنَّهُ مُركَّبٌ، وتبقى الخصائص والمعادلات تنطبق عليه أيضاً.[ِ 1]

جميعُ المثلثاتِ لها دائرةٌ مُحيطةٌ. إلا أنّه ليست جميعُ الرباعيات لها دوائر مُحيطة. فجميعُ المُعيَّنات غير المربعة لا يُمكن أن تقع رؤوسها على دائرة. إحدى أشهر توصيفات الرباعي الدائري هي أنَّ كُلَّ زاويتين متقابلتين فيه مُتكاملتانِ، والعكس صحيح. هناك رباعيات شهيرة تُصنَّف دائماً على أنها دائرية، من ضمنها المستطيل وشبه منحرف متساوي الساقين، واللذان يُصنّف من ضمنهما المُربّع أيضاً. للرباعيات الدائرية نظريات خاصة تنطبق عليها مثل نظرية بطليموس ونظرية قوة النقطة.
Remove ads
حالاتٌ خاصَّةٌ
جميعُ المربعات، المستطيلات، أشباه المنحرف متطابقة الساقين وأضداد متوازي الأضلاع رباعيات دائرية. بينما الطائرة الورقية تُعدُّ دائريةً إذا وفقط إذا احتوت على زاويتين قائمتين. يُختص الرباعي ثنائي المركز (بالإنجليزية: Bicentric quadrilateral) على أنه رباعي مماسي ودائري. حيث أنَّ الرباع المماسي هو رباعي حاصرٌ لدائرة أي يمسَّها من الداخل من جميع الجهات. بينما الرباعي ثنائي المركز الخارجي (بالإنجليزية: Ex-bicentric quadrilateral) هو رباعي مماسي خارجي ودائري في الوقت نفسه. الرباعي التناغمي هو دائري يكون فيه حاصل ضرب أطوال أضلاعه المتقابلة متساوٍ.
Remove ads
التوصيف والمبرهنات
الملخص
السياق

الشروط المذكورة للرباعي الدائري هي شروط مُتكافئة، أي أنَّ تَحقُّقَ أحد الشروط يُؤدي إلى تحقُّقِ بقيةِ الشروط. تُعرَف أيضاً الشروط على أنها شروطٌ كافية وضرورية أي أنَّ تحقُّقَ عكسِ الشرط المذكور يُؤدّي إلى أن يكونَ الرباعيُّ دائرياً. يُعدُّ الشكلُ الرُّباعيُّ دائريَّاً إذا وفقط إذا:[ِ 1][4]
- تقاطعت مُنصَِفاتُ أضلاعِه العموديةِ في نُقطَةٍ واحدةٍ.
- وُجِدَت زاويتان مُتقابلتان فيه مُتكاملتان.
- وُجِدَت زاويتان متساويتان رأسهما إحدى رأسي الرُّباعي على جهةٍ واحدةٍ من قاعدته. (رياضيّاً: )
- نظرية بطليموس: مجموع جداء كُلٌّ من ضلعيه المتقابلين مُساوٍ لجداء قُطرَيْه. (رياضياً: )
Remove ads
نظرية قوة النقطة
الملخص
السياق
ينطبقُ على الرُباعيِّ الدائريِّ نظرية قوة النقطة بالنسبة لدائرة:
![]() |
![]() |
نظريَّتا قِطَعِ الوترِ والقاطع. | نظرية قاطعِ التَّماسِّ. |
Remove ads
النتائج التحليليَّة
المساحة
بحسب صيغة مساحة براهماغوبتا، تُحسَب مساحة الرباعي الدائري الذي أطوال أضلاعه: ونصف محيطه حيث بالصيغة الآتية:
نصف قطر الدائرة المحيطة
في القرن الخامس عشر الميلادي، استنتج العالم الهندي ڤاتاسِّيري پاراميشڤارا صيغة إيجاد نِصفِ قُطرِ الدَّائرةِ المُحِيطَةِ بدلالةِ أطوالِ الأضلاعِ ونصف المحيط:
Remove ads
هوامش
1. الرُّباعيُّ الدَّائرِيُّ[ِ 2][ِ 3][ِ 1] أو رباعي أضلاع دائري[ِ 4][ِ 5] أو الشكل الرباعي الدائري[ِ 6][ِ 2][ِ 7] (بالإنجليزية: Cyclic quadrilateral) أو رباعي الأضلاع المحاط بدائرة أو رباعي الأضلاع المحوط أو رباعي الأضلاع المُرتسَم في دائرة (بالإنجليزية: Inscribed quadrilateral).
انظر أيضًا
مراجع
وصلات خارجية
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads