أفضل الأسئلة
الجدول الزمني
الدردشة
السياق
معادلة جبرية
مساواة بين مقدارين جبريين يحوي أحدهما أو كلاهما متغيرا أو أكثر من ويكيبيديا، الموسوعة الحرة
Remove ads
في الرياضيات، المعادلة الجبرية (بالإنجليزية: Algebraic equation) أو معادلة متعددة الحدود (بالإنجليزية: Polynomial equation) أو المعادلة الحدودية هي مساواة بين مقدارين جبريين يحوي أحدهما أو كلاهما متغيرا أو أكثر حيث القيمة العددية للمقدار الأول لا تساوي القيمة العددية للمقدار الثاني إلا مع قيم خاصة للمتغيرات.[1][2][3] على سبيل المثال، معادلة حدودية أحادية المتغير، هي معادلة تأخذ الشكل التالي:

حيث هن معاملات المعادلة. الهدف هو إيجاد جميع قيم المجهول .
يقال عن متعددة للحدود أنها من الدرجة الأولى إذا كانت أعلى قوة ل تظهر في المعادلة هي واحد، وأنها من الدرجة الثانية إذا كانت أعلى قوة ل هي اثنين وهكذا دواليك. إذن، يقال عن متعددة للحدود أنها من الدرجة إذا كانت أعلى قوة ل هي . تنص المبرهنة الأساسية في الجبر على أن لكل معادلة حدودية من الدرجة يوجد عدد من الحلول (ذلك إذا احتُسبت الحلول المكررة أي التي يجب أن تعد مرتين). أضف إلى ذلك أن لكل معادلة حدودية ذات معاملات تنتمي إلى مجموعة الأعداد الحقيقية حلولٌ مركبة مترافقة مع بعضها البعض مثنى مثنى. أي أنه يكون دائما هناك حل في شكل وحل آخر في شكل . أما إذا كانت المعاملات عقدية فإن ذلك لا يبقى صحيحا.
Remove ads
مثال
Remove ads
المبرهنة الأساسية في الجبر
إذا اعتبرنا المعادلة التالية:
فإن الحل هو ولكن يتم اعتبار هذا الحل مكررا مرتين لأننا يمكن أن نكتب المعادلة بالشكل التالي:
و لذلك نرى أنه لتكون المعادلة صحيحة يجب أن يكون القوس الأول يساوي صفرا أو الثاني يساوي صفرا وفي كل مرة يعينا ذلك حلا أي أن الحل مكرر مرتين.
كذلك إذا اعتبرنا
فإن الحل هو ولكنه مكرر مرة إلخ.... بهذه الطريقة تتم حساب عدد الحلول. وعلى أساس ذلك يكون كما هو مذكور أعلاه لكل معادلة حدودية من الدرجة عدد من الحلول
Remove ads
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads