Інтэграл
From Wikipedia, the free encyclopedia
Remove ads
Інтэгра́л фу́нкцыі — аналаг сумы паслядоўнасці, адно з галоўных паняццяў матэматычнага аналізу. Паняцце ўзнікла ў сувязі з патрэбаю знаходзіць функцыі па іх вытворных (нявызначаны інтэграл) і вызначаць плошчы, аб’ёмы і г.д. (вызначаны інтэграл).


Працэс знаходжання інтэграла называецца інтэграва́ннем.
Згодна з асноўнай тэарэмай аналізу, інтэграванне ёсць аперацыяй, адваротнай да дыферэнцавання. Гэты факт выкарыстоўваецца пры развязанні дыферэнцыяльных раўнанняў.
Існуе некалькі розных азначэнняў аперацыі інтэгравання, якія адрозніваюцца ў тэхнічных дэталях. Аднак усе яны ўзгодненыя, г.зн. любыя два спосабы інтэгравання, калі іх можна прымяніць да дадзенай функцыі, дадуць адзін і той жа вынік. Найбольш простым з’яўляецца інтэграл Рымана.
Remove ads
Нявызначаны інтэграл
Хай дадзена — функцыя сапраўднай зменнай. Нявызначаным інтэгралам функцыі ці яе першаіснай называецца такая функцыя , вытворная ад якой роўная , то-бок . Пазначаецца гэта так:
У гэтым запісе -- знак інтэграла, называецца падынтэгральны функцыяй, а -- элементам інтэгравання.
Першаісная ёсць не для кожнай функцыі. Лёгка паказаць, што, прынамсі, усё бесперапынныя функцыі маюць першаісную. Паколькі вытворныя двух функцый, якія адрозніваюцца на канстанту, супадаюць, у выраз для нявызначанага інтэграла ўключаюць адвольную пастаянную , напрыклад
Аперацыя знаходжання інтэграла называецца інтэграваннем. Аперацыі інтэгравання і дыферэнцыявання процілеглыя адна другой у наступным сэнсе[1]:
Remove ads
Зноскі
Спасылкі
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads