Homotopia
concepte en topologia algebraica From Wikipedia, the free encyclopedia
Remove ads
En topologia, la noció d'homotopia recull l'ideal de què gaudeix la topologia de ser la geometria del full d'hule, és a dir, deformable. Dues aplicacions contínues d'un espai topològic en un altre es diuen homotòpiques (del grec homos = mateix i topos = lloc) si una d'elles es pot "deformar contínuament" en l'altra.[1]
- Nota: L'article pot necessitar alguna petita correcció

Una aplicació notable de l'homotopia és la definició dels grups homotòpics i cohomotòpics, invariants importants en la topologia algebraica.[2]
Remove ads
Definició formal
Dues aplicacions contínues es diuen homotòpiques si hi ha una altra aplicació (contínua també) tal que:
Un exemple important és considerar les diferents classes (homotòpiques) de mapatges del cercle a un espai
l'estructura resultant és l'importantíssim grup fonamental.[3]
Remove ads
Tipus homotòpics
Es diu que dos espais X , Y són del mateix tipus homotòpic , si hi ha un parell d'aplicacions i tals que i són homotòpiques de i respectivament.
Sol ser utilitzat el símbol: , per indicar que els objectes f i g són homotòpics .
Com a exemples, una 1-esfera i un tor sòlid tenen el mateix tipus homotòpic. La superfície del toro amb un "disc remogut" té el mateix tipus homotòpic que un producte cartesià de dues 1-esferes (bouquet de dos cercles).
Remove ads
Referències
Bibliografia
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads