objecte gromètric que s'esten en una mateixa direcció en una sola dimensió From Wikipedia, the free encyclopedia
Una recta, o línia recta, és un objecte geomètric format per un conjunt d'infinits punts, infinitament llarg i infinitament prim, que no té curvatura.[1][2][3] També es diu que els punts d'una recta estan alineats.
Euclides, en el seu tractat anomenat Els Elements,[4] estableix diverses definicions relacionades amb la línia i la línia recta:
S'anomena semirecta[nota 1] cadascuna de les dues parts en què queda dividida una recta en ser tallada a qualsevol dels seus punts. És la part d'una recta conformada per tots els punts que s'ubiquen cap a un costat d'un punt fix de la recta, anomenat origen, a partir del qual s'estén indefinidament en un sol sentit.
La semirecta oposada d'una semirecta és l'altra sortida semirecta de la recta que defineix la primera.[8][9]
En geometria, la recta és un conjunt d'infinits punts, subconjunt parcial dels infinits punts que formen un pla i que compleix unes determinades propietats. És un ens fonamental (juntament amb el punt i el pla) que no admet una definició més concreta. Simplement, s'enuncien les propietats i se n'accepta l'existència de forma axiomàtica. Aquestes propietats (no demostrables) són les següents:
1. Per dos punts diferents hi passa una recta i només una.
2. Si dos punts d'una recta estan en un pla, llavors tots els altres punts de la recta també estan continguts en aquest pla.
3. La recta és un conjunt de punts linealment ordenat, obert i dens, on:
4. Tota recta continguda en un pla estableix una divisió dels punts del pla no continguts en la recta en dues úniques regions tals que tot punt del pla exterior a la recta pertany a una o altra regió, i de manera que, escollits dos punts que pertanyin a diferents regions, la recta que els conté té un punt situat entre ells que pertany a la recta original i viceversa.
5. Per un punt exterior a una recta, hi passa una (i només una) recta tal que les dues estan contingudes en un mateix pla i no tenen entre elles cap punt en comú (paral·lela).
6. Donada una classificació dels punts d'una recta en dues regions que compleix:
Temes relacionats amb els punts 4 i 6: semiplà, semirecta.
En un espai vectorial (per exemple R2 o R3) es defineix la recta r com:
on i són vectors (per exemple de R2 o R3) fixos i és no nul. t és un paràmetre real lliure que és el paràmetre arc quan és unitari. El vector b descriu la direcció de la recta i és un punt de la recta. Aquesta equació és l'anomenada equació vectorial d'una recta.
De forma més abstracte, hom sovint assumeix que els punts d'una recta es corresponen d'un a un amb els nombres reals.
Dues rectes qualssevol (una representada amb primes (') sobre els seus paràmetres i l'altre no)
Angle entre dues rectes: Dues rectes que es tallen defineixen quatre angles iguals dos a dos. L'angle (α) que formen les rectes es defineix tal que està entre 0 i 90°. Coneguts els vectors directors amb l'expressió que defineix el que formen els seus vectors directors i , es pot calcular l'angle que formen amb l'expressió:
Distància entre un punt i una recta: La distància entre una recta ( ) i un punt exterior a r és la menor de les distàncies entre el punt P i qualsevol dels punts de la recta r. Aquesta distància es minimitza amb la projecció ortogonal de P sobre r, i l'expressió que dona la distància entre P i r' és:
Distància entre dues rectes: la distància entre dues rectes és la menor distància entre punts d'una i altra recta. Si les rectes tenen algun punt en comú (si són secants), la distància és 0; si són paral·leles, la distància entre elles ve donada per la distància entre un punt d'una recta i l'altra recta, ja que aquest valor és independent del punt triat.
Recta a l'espai usant un sistema de 2 equacions i 3 incògnites:
Recta a l'espai usant un punt, , i un vector, :
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.