Výstřednost kuželosečky

číslo, které charakterizuje tvar kuželosečky From Wikipedia, the free encyclopedia

Remove ads

Výstřednost neboli excentricita kuželosečky je nezáporné reálné číslo, které charakterizuje tvar dané kuželosečky. Používá se například v astronomii pro charakterizaci drah těles ve vesmíru jakožto excentricita dráhy. Existuje několik různých druhů excentricit. Nejčastěji se používá číselná výstřednost (excentricita),[1] také zvaná první excentricita nebo numerická excentricita. Lze si ji představit jako míru toho, jak moc se kuželosečka liší od kružnice. Konkrétně:

  • Číselná excentricita kružnice je nulová.
  • Číselná excentricita elipsy, která není kružnicí, je větší než nula, ale menší než 1.
  • Číselná excentricita paraboly je 1.
  • Číselná excentricita hyperboly je větší než 1.

Dvě kuželosečky jsou podobné právě tehdy, pokud mají stejnou číselnou výstřednost. Definice číselné výstřednosti vychází z toho, že libovolnou kuželosečku vyjma kružnice lze definovat jako množinu (geometrické místo) bodů roviny, jejichž vzdálenosti k dané přímce (řídící přímce) a mimo tuto přímku ležícími bodu (ohnisku) jsou v konstantním poměru. A tento poměr se nazývá číselná výstřednost a běžně označuje jako e nebo ε.

Dále se používá lineární výstřednost či excentricita elipsy nebo hyperboly, označovaná jako c (někdy také f nebo e ). Ta se definuje jako vzdálenost mezi jejím středem a ohniskem. Tuto excentricitu lze definovat jako poměr lineární excentricity k hlavní poloose a : tj. (lineární excentricita pro paraboly není definována, jelikož nemají střed).

Další informace , ...

U elipsy s délkou hlavní poloosy a a vedlejší poloosy b

Jestliže je kuželosečka zadána obecnou kvadratickou rovnicí

následující vzorec udává výstřednost e pokud kuželosečka není parabola (která má výstřednost rovnou 1), není degenerovaná hyperbola nebo degenerovaná elipsa a není imaginární elipsa:[2]

kde , pokud je determinant matice 3 × 3

negativní a , pokud je tento determinant pozitivní.

Excentricita elipsy je ostře menší než 1. Pokud se kružnice (které mají výstřednost 0) počítají mezi elipsy, je výstřednost elipsy větší nebo rovna 0; pokud kružnice vyloučíme, pak je výstřednost elipsy ostře větší než 0.

Pro elipsy s hlavní poloosou a a vedlejší poloosou b dále definujeme další typy výstředností:

Další informace , ...
Remove ads

Reference

Externí odkazy

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads