Gama funkce

From Wikipedia, the free encyclopedia

Gama funkce
Remove ads

Gama funkce (někdy také označovaná jako Eulerův integrál druhého druhu) je zobecněním faktoriálu pro obor komplexních čísel. Používá se v mnoha oblastech matematiky, např. pro popis některých rozdělení pravděpodobnosti.

Thumb
Graf funkce gama pro reálná čísla.

Funkce je značena pomocí řeckého písmene gama a je definována jako holomorfní rozšíření integrálu:

Ačkoliv integrál samotný konverguje jen, je-li reálná část z kladná, gama funkce je definována pro libovolné komplexní číslo, kromě nekladných celých čísel.

Remove ads

Vlastnosti

Funkce je spojitá pro . Funkce diverguje pro celá . Tyto body jsou póly prvního řádu a odpovídající rezidua jsou . Jiné singularity nemá a jedná se tedy o funkci meromorfní v celém oboru .

Pro n-tou derivaci platí vztah

.

V oblasti kladných reálných čísel má gama funkce minimum v bodě .

Remove ads

Užitečné vztahy

Některé hodnoty

Další informace , ...

Grafy

Související články

Externí odkazy

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads