Versatile Video Coding
standard pro kompresi videa From Wikipedia, the free encyclopedia
Remove ads
Versatile Video Coding (VVC, H.266, MPEG-I Část 3, pozor – nezaměňovat s MPEG-1) je standard pro kompresi videa, nástupce standardu HEVC. Cílem je 50% snížení datového toku při zachování stejné subjektivní kvality jako HEVC. Referenční software, který je vyvíjen na Fraunhoferově institutu, dosahoval v září 2018 zlepšení zhruba 40 % proti HEVC.[1] Standard byl vydán 6. července 2020.[2]
Stejně jako jeho předchůdci je VVC zástupcem hybridní komprese videa, při které je snímek rozdělen na bloky, které jsou predikovány buď v režimu intra z okolních bloků, nebo v režimu inter pomocí pohybových vektorů z okolních snímků. Chyba po predikci je transformována některou z variant diskrétní kosinové nebo sinové transformace. Bloky mají obdélníkovou velikost a jsou součástí stromové struktury, která se adaptuje na obrazová data.
Rozsah uplatnění byl u VVC standardu značně rozšířen. Poskytuje efektivní kódování videa ve vysokém rozlišení jako je HD, ultra HD, 4K, 8K a HDR (vysoký dynamický rozsah), ale podpoří i 10-bit video a 360° video.[3]
MC-IF (Media Coding Industry Forum), které má za cíl rozšířit využívání MPEG standardů, primárně VVC,[4] vyvíjí snahu zabránit zmatku při licencování, který například předchůdci (HEVC) výrazně snížil popularitu, především ve srovnání s předešlým standardem AVC H.264.[5] V září 2020 se konalo setkání VVC Pool Fostering pořádané MC-IF, kterého se mohl zúčastnit každý, kdo měl práva duševního vlastnictví vázaná na VVC a chtěl se podílet na komplementaci společného fondu patentů potřebných pro standard VVC. Výsledkem bylo v lednu 2021 uvedeno, že budoucími správci sdružování patentů se pravděpodobně stanou Access Advance a MPEG LA. Ti budou mít za úkol pokračovat s formováním fondu, který by zahrnul veškeré patenty nezbytné pro VVC standard.[6]
Versatile Video Coding byl vyvinut týmem expertů JVET (Joint Video Experts Team – partnerství ITU, ISO a IEC) ve spolupráci s Fraunhoferovým institutem.[7] Základním cílem bylo snížením datového toku odlehčit globálním sítím. Toho tým dosáhl implementací nových kódovacích nástrojů jako jsou Afine Motion Composition, který dokáže efektivněji modelovat například zoomování, Triangular partition mode s výrazně vylepšenou schopností odhadovat tvar objektů, či Bi-directional optical flow umožňující odhad pohybu během dekódovacího procesu.[3]
Remove ads
Software
- Referenční software VVC Test Model (VTM) Fraunhofer HHI.[8]
- Fraunhofer Versatile Video Encoder (VVenC) & Decoder (VVdeC).[9][10] v C++. 70x rychlejší než referenční software.[11] Decoder Version 1.0.0 v III2021[12], Encoder Version 1.0.0 v V2021.[13]
- Real Time 8K VVC Decoder – Firma Sharp. Dekodér v reálném čase.[14]
- MP4Box - GPAC v1.1, [15] aktuálně k dispozici jako vývojářská verze [16] (od IX2021).
Projekt je vyvíjen hlavně ve společnosti Télécom Paris ve skupině MultiMedia za pomoci mnoha významných přispěvatelů.
- MultiCoreware vyvíjí kodér VVC s otevřeným zdrojovým kódem x266.[17][18]
- Tencent Media Lab vyvíjí (komerční) dekodér H.266 v reálném čase.[19]
- (Komerční) analyzátor videa od Elecard podporuje VVC.[20]
- Spin Digital nabízí dekodér a přehrávač VVC v reálném čase.[21]
- Francouzský IETR (Institut d'Électronique et de Télécommunications de Rennes) vyvíjí dekodér OpenVVC [22] v reálném čase a speciální verzi FFmpeg, [23] která byla použita pro test[24] vysílání ATEME společně s přehrávačem médií VideoLAN. [25]
Použití
Poskytovatelé obsahu
Hardware
Reference
Externí odkazy
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads