Ffractal
From Wikipedia, the free encyclopedia
Remove ads
Set fathemategol yw ffractal sy'n ail-adrodd mewn modd anfeidraidd. Fe'u gwelir yn aml ym myd natur oherwydd eu tueddiad i ymddangos yn debyg ar bob graddfa, fel y gwelir wrth chwyddo'r Set Mandelbrot yn fwy ac yn fwy, ar y dde.[1][2][3][4] Mae ffractalau yn dangos patrymau tebyg ar raddfeydd gynyddol fychan,[5] sydd hefyd yn cael ei ddisgrifio fel 'cymesuredd ehangol' neu 'gymesuredd datblygol'; os yw'r dyblygiad hwn yn union yr un fath ar bob graddfa, fel gyda'r sbwng Menger,[6] fe'i gelwir yn "batrwm hunan-debygol" (self-similar pattern).
Set Mandelbrot: Hunan-debygrwydd wedi ei ddangos drwy chwyddo'r delwedd. Ar y panel hwn, dim chwyddo.
Yr un ffractal a'r uchod, wedi ei chwyddo 6 chwaith. Mae'r un patrymau yn ymddangos, gan wneud yr union raddfa yn anodd i'w benderfynu.
Mae ystyr wahanol i'r gair "ffractal" ar lawr gwlad ag i'r mathemategwr: o ddydd i ddydd, caiff ei ddefnyddio i ddisgrifio patrwm celfyddydol, yn hytrach na'r fathemateg sydd wrth gefn y gwaith. Mae'n anodd diffinio'r cysyniad mathemategol yn ffurfiol, hyd yn oed ar gyfer mathemategwyr, ond gellir deall rhai nodweddion allweddol gydag ychydig o gefndir mathemategol. Gellir nodi yma ei fod yn debyg i'r sbeiral mewn rhai agweddau: mae'n ailadrodd, ac yn anfeidraidd yn y ddau ben - wrth fynd i mewn o'r sbeiral ac wrth iddo chwyddo'n fwy.
Mae'r elfen o "raddfa" a "hunan-debygrwydd" yn dod yn fwy eglur pan feddyliwn am gamera'n zwmio i fewn, gan chwyddo'r llun, fel y gwelir y manylion lleiaf. Ond gyda lens, ceir terfyn i'r chwyddo; gyda ffractaliaeth gellir parhau i chwyddo i mewn i'r llun yn ddiddiwedd, gyda'r patrwm yn ailadrodd drosodd a throsodd.
Remove ads
Cyfeiriadau
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads