System cyfesurynnau polar
From Wikipedia, the free encyclopedia
Remove ads
Mewn mathemateg, mae'r system cyfesurynnau polar yn system o gyfesurynnau o fewn y gofod dau ddimensiwn lle mae pob pwynt ar y plân yn cael ei bennu gan bellter o bwynt cyfeiriol ac ongl. Defnyddir yr un termau ag a ddefnyddir o fewn y system gyfesurynnol Cartesaidd:
- y tarddiad, sef y pwynt cyfeiriol a'r
- echelin begynol (polar axis)

Gelwir y pellter o'r tarddiad yn "gyfesuryn rheiddiol", neu "radiws", a'r ongl yn "gyfesuryn onglaidd", "ongl begynol" neu'n "asimwth".[1][2]
Remove ads
Hanes
Creeodd y seryddwr Hipparchus (190–120 CC) dabl o ffwythiannau'r cord (table of chord functions) gan roi hyd cord pob ongl, a cheir tystiolaeth iddo ddefnyddio cyfesurynnau pegynol wrth nodi lleoliad y sêr.[3] Yn ei lyfr Ar Sbiralau, disgrifiodd Archimedes yr hyn a elwir heddiw yn sbiral Archimedes, ffwythiant ble mae'r radiws yn dibynnu ar yr ongl; fodd bynnag ni ddisgrifiodd y system cyfesurynnau polar llawn, na'i ddiffinio. Yn y 17g cyflwynwyd y cysyniad o system cyfesurynnau polar gan ddau fathemategydd, yn annibynnol o'i gilydd: Grégoire de Saint-Vincent a Bonaventura Cavalieri.
Remove ads
Confensiynau

Dynodir y cyfesuryn rheiddiol yn aml gan r neu ρ, a'r cyfesuryn onglaidd gan φ, θ, neu t. Mae ISO 31-11 yn dynodi'r cyfesuryn onglaidd fel φ ond o fewn llenyddiaeth mathemategol, bron yn ddieithriad, defnyddir &theta yn hytrach na φ.
Y mynegiant arferol ar gyfer onglau yw naill ai 'gradd' neu 'radian' (2π rad = 360°). Defnyddir graddau o fewn fforio a mapio, defnyddir radianau o fewn mathemateg a ffiseg.[4]
Remove ads
Cyfeiriadau
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads