Nullsummenspiel

Situationen, bei denen die Summe der Gewinne und Verluste aller Spieler zusammengenommen gleich null ist / aus Wikipedia, der freien Enzyklopädie

Nullsummenspiele beschreiben in der Spieltheorie Situationen, also Spiele im verallgemeinerten Sinne, bei denen die Summe der Gewinne und Verluste aller Spieler gleich null ist.[1]

Nullsummenspiele sind spieltheoretisch äquivalent zu den Spielen mit konstanter Summe (Konstantsummenspielen). Bei diesen Spielen ist die gemeinsame Auszahlungssumme nicht gleich null, sondern gleich einer Konstanten, betrachtet man jedoch die Auszahlung als im Voraus an die Spieler verteilt, so spielen diese um eine Umverteilung mit Summe null. Beispiele für Nullsummenspiele sind alle Gesellschaftsspiele und Sportarten, bei denen gegeneinander um den Sieg gespielt wird, beispielsweise Poker oder Schach. Es ist dabei zu beachten, dass die betrachteten Gewinne und Verluste außerhalb des Spieles verstanden werden – in einer Schachpartie verlieren beide Spieler gegenüber dem Partiebeginn in der Regel an Spielmaterial, es geht aber nur um die Auszahlung des Spieles „nach außen“, hier zum Beispiel als „ein Punkt in einem Turnier“.

Ein Nullsummenspiel im ökonomischen Sinne ist eine Konkurrenzsituation, bei der der wirtschaftliche Erfolg oder Gewinn eines Beteiligten einem Misserfolg oder Verlust eines anderen in gleicher Höhe gegenübersteht.

Der allgemeine Fall des Nicht-Nullsummenspiels wird oft als Coopetition bezeichnet. Man kann dabei noch unterscheiden, ob die Summe zu jedem Zeitpunkt null ist oder ob es bestimmte Zeiten während der Spielzüge gibt, in denen sie ungleich null oder unbestimmt ist. Ein besonderer Fall des Nicht-Nullsummenspiels ist das sogenannte Win-Win-Spiel, bei dem alle Beteiligten gleichzeitig gewinnen können, dieser Spielausgang aber dennoch nicht automatisch erreicht werden kann.