Loading AI tools
nationales Forschungszentrum der USA auf Long Island; Synchrotronstrahlungsquelle, Schwerionen-Collider Aus Wikipedia, der freien Enzyklopädie
Das Brookhaven National Laboratory (BNL) ist ein nationales Forschungszentrum auf Long Island im US-Bundesstaat New York.
Das Labor wurde 1947 auf dem Gelände der ehemaligen Militärbasis Camp Upton errichtet und seitdem stetig weiterentwickelt. Die ursprüngliche Dachorganisation des BNL war die United States Atomic Energy Commission. Heute wird es von deren Nachfolger, dem US Department of Energy, betrieben und finanziert. Das Labor beschäftigt etwa 3000 festangestellte Mitarbeiter. Darüber hinaus reisen jedes Jahr etwa 4500 Gastwissenschaftler an das BNL.
Schon seit seiner Gründung ist das Forschungsprogramm des BNL stark auf den Betrieb und die Nutzung von Großforschungseinrichtungen ausgerichtet. In den 1950er und 1960er Jahren gingen mehrere Forschungsreaktoren in Betrieb (darunter der Brookhaven Graphite Research Reactor und der High Flux Beam Reactor), in denen unter anderem Experimente in der Kern- und Materialforschung durchgeführt und Radionuklide für die biologische und medizinische Forschung produziert wurden. In demselben Zeitraum wurden zwei Protonenbeschleuniger für die Elementarteilchenphysik (das Cosmotron und das Alternating Gradient Synchrotron) in Betrieb genommen. In den 1970er Jahren kam die National Synchrotron Light Source hinzu, die intensive Röntgenstrahlen für ein breites Spektrum von Forschungsbereichen zur Verfügung stellte und sowohl von BNL-Wissenschaftlern als auch von einer wachsenden Gruppe externer Forschungsgruppen genutzt wurde; in den 1990er Jahren wurden auch Strahllinien für den infraroten Spektralbereich installiert. Nach Stilllegung dieser Anlagen betreibt das BNL heute zwei Großforschungseinrichtungen von internationaler Bedeutung: den Relativistic Heavy Ion Collider (RHIC) für die Schwerionen- und Elementarteilchenphysik sowie die National Synchrotron Light Source II (NSLS-II) als Quelle von Synchrotronstrahlung für eine Vielfalt von Forschungsbereichen.
Für Entdeckungen mit direktem Bezug zum Brookhaven National Laboratory wurden insgesamt sieben Nobelpreise vergeben. Dazu zählen unter anderem die erstmalige Beobachtung des J/ψ-Mesons (Physik-Nobelpreis 1976), die Entdeckung des Myon-Neutrinos (Physik-Nobelpreis 1988), der Nachweis von kosmischen Neutrinos (Physik-Nobelpreis 2002) und die Aufklärung der Struktur und Funktion des Ribosoms (Chemie-Nobelpreis 2009). Heute reicht das Forschungsportfolio des BNL von der Grundlagenforschung in Physik, Chemie und Biowissenschaften bis hin zu anwendungsorientierten Fragestellungen in der Energie- und Umweltforschung.
Lage des BNL im Bundesstaat New York. |
Das BNL liegt im Osten der Insel Long Island, etwa 100 Kilometer Luftlinie vom Zentrum von New York City entfernt. Der BNL-Komplex erstreckt sich über eine Gesamtfläche von 21,3 Quadratkilometern[1] und ist von den westlichen Ausläufern der Long Island Central Pine Barrens umgeben, einem Waldgebiet mit einer Fläche von circa 425 Quadratkilometern.[2] Zwei Kilometer südlich des BNL verläuft der von New York City kommende Highway Interstate 495. Weitere drei Kilometer südlich befindet sich der Brookhaven Airport, der vom Verwaltungsbezirk Brookhaven betrieben wird. Sieben Kilometer östlich des Labors liegt der ausschließlich privat genutzte Calverton Executive Airpark. Darüber hinaus ist das Labor durch die 1997 gegründete New York and Atlantic Railway an das Schienennetz angeschlossen. Die nächstgelegenen Städte sind das rund 18 Kilometer südwestlich gelegene Patchogue und etwa 19 Kilometer östlich Riverhead.
Die Initiative zur Gründung eines Nationallabors im Nordosten der Vereinigten Staaten ging ursprünglich von dem Physik-Nobelpreisträger Isidor Isaac Rabi aus. Rabi war in den 1930er Jahren Professor an der Columbia University in New York City. In den Kriegsjahren 1940–1945 war er am Radiation Laboratory des Massachusetts Institute of Technology tätig und nahm am Manhattan Project zur Entwicklung der ersten Kernwaffen teil. 1945 kehrte er an die Columbia University zurück. Viele seiner ehemaligen Kollegen hatten inzwischen die Universität verlassen und Positionen an anderen Einrichtungen in den Vereinigten Staaten angenommen.[3] Dazu gehörten unter anderem die Nobelpreisträger Enrico Fermi und Harold Urey, die ebenfalls am Manhattan Project mitgewirkt hatten, dann aber von der University of Chicago abgeworben wurden. Gemeinsam mit seinem Kollegen Norman Ramsey (der später ebenfalls den Physik-Nobelpreis erhielt) plante Rabi zunächst den Bau eines Forschungsreaktors an der Columbia University, um die Attraktivität des Standorts für herausragende Physiker zu erhöhen. Da die dafür benötigten Ressourcen die Kapazität der Columbia University jedoch überstiegen, etablierten neun Universitäten[4] im März 1946 auf Betreiben Rabis und Ramseys die Initiatory University Group (IUG), welche die Gründung eines neuen Labors an der Ostküste planen und einleiten sollte. Der erste Vorsitzende der IUG war Lee DuBridge, der während des Zweiten Weltkriegs das MIT Radiation Laboratory geleitet hatte. Zur Finanzierung des Labors stellte die IUG einen Antrag an General Leslie Groves, den militärischen Leiter des Manhattan Projects, der zu der Zeit noch immer als Koordinator des US-Kernwaffenprogramms tätig war. General Groves gab der IUG im März 1946 eine Finanzierungszusage.[5] Am 1. Januar 1947 wurde das Labor unter dem Namen Brookhaven National Laboratory als Nationallabor etabliert und neben dem Argonne National Laboratory und dem Clinton National Laboratory[6] unter die Aufsicht der neugeschaffenen Atomic Energy Commission (AEC), dem Vorläufer des heutigen Energieministeriums, gestellt.[7] Das temporäre Konsortium der neun Gründungsuniversitäten wurde im Jahr 1947 unter dem Namen Associated Universities Incorporated (kurz AUI) im Bundesstaat New York formell registriert.[8]
Es gab insgesamt 17 Vorschläge für den Ort, an dem das neue Labor errichtet werden sollte, wobei die meisten Stützpunkte des US-Militärs waren. Ein von Norman Ramsey geleitetes Komitee wurde mit der Entscheidungsfindung beauftragt. Die maßgeblichen Kriterien waren dabei die Erreichbarkeit des Labors innerhalb einer Stunde von der nächsten Zugstation, ausreichende Fläche für die Großforschungseinrichtungen und eine schwache Besiedlung der umliegenden Gegend, um im Falle eines Reaktorunfalls Strahlenschäden innerhalb der Bevölkerung zu minimieren. Die Kommission identifizierte den ohnehin überflüssig gewordenen Armeestützpunkt Camp Upton auf Long Island nahe New York City als den einzigen Ort, der all diese Kriterien erfüllte. Camp Upton wurde im Jahr 1917 fertiggestellt und fungierte während des Ersten Weltkriegs als Ausbildungslager für Rekruten der US-Streitkräfte, die von eingereisten französischen und britischen Offizieren instruiert wurden.[9] Nach Ende des Ersten Weltkriegs wurde das Camp vorerst stillgelegt, mit dem Einstieg der Vereinigten Staaten in den Zweiten Weltkrieg jedoch reaktiviert. Dabei diente Camp Upton in den Kriegsjahren unter anderem als Krankenhaus und als Kriegsgefangenenlager,[10] bevor es im Jahr 1946 vollständig geschlossen wurde. Aufgrund der Empfehlung des Ramsey-Komitees wurde das Gelände des Camp Upton am 21. März 1947 vom Kriegsministerium der Vereinigten Staaten an die AEC übertragen.[11]
Gemäß der Initiative von Rabi und Ramsey lag der anfängliche Forschungsschwerpunkt des BNL auf der Kernforschung. Infolge der militärischen Bedeutung dieses Forschungszweiges erschwerten strenge Sicherheitsüberprüfungen aller neuangestellten Wissenschaftler zunächst die Rekrutierung von wissenschaftlichem Personal. Zusätzliche Komplikationen ergaben sich aus der von der AEC geforderten Geheimhaltung von Forschungsergebnissen. Nach langwierigen Verhandlungen zwischen der AUI und der AEC konnte in diesen Angelegenheiten ein Kompromiss erzielt werden: Alle Forschungsergebnisse sollten öffentlich zugänglich sein, mit Ausnahme einiger Erkenntnisse aus der Kernphysik, die vor der Veröffentlichung von der AEC freigegeben werden mussten. Personen ohne Sicherheitszertifikat sollten Zugang zu allen Gebäuden erhalten, ausschließlich dem Reaktor und der Bücherei, in der geheime Dokumente aufbewahrt wurden.[12] Mit diesen Regelungen konnten die BNL-Wissenschaftler unter Leitung des ersten Direktors Philip Morse ihr Ziel verwirklichen, eine universitätsähnliche Arbeitsatmosphäre zu schaffen. Die Einstellung von Wissenschaftlern schritt danach zügiger voran, und Mitte 1948 hatte das BNL bereits 1500 Angestellte.
Name | Zeitraum | Lebensdaten |
---|---|---|
Philip M. Morse | 1947–1948 | 1903–1985 |
Leland J. Haworth | 1948–1961 | 1904–1979 |
Maurice Goldhaber | 1961–1973 | 1911–2011 |
George H. Vineyard | 1973–1981 | 1920–1987 |
Nicholas P. Samios | 1982–1997 | * 1932 |
Lyle Schwartz (interim) | 1997 | |
Peter Bond (interim) | 1997–1998 | |
John H. Marburger | 1998–2001 | 1941–2011 |
Peter Paul (interim) | 2001–2003 | 1932–2017 |
Praveen Chaudhari | 2003–2006 | 1937–2010 |
Samuel H. Aronson | 2006–2012 | * 1942 |
Doon Gibbs | seit 2012 | * 1954 |
Nach dem vollständigen Ausbau im Jahr 1948 gab es am BNL sechs Departments: Physik, Chemie, Biologie, Medizin, Ingenieurwissenschaften und Instrumentierung.[13] Während sich die letzteren beiden Departments fast ausschließlich mit dem Aufbau und Betrieb der Forschungsreaktoren und Teilchenbeschleuniger befassten, konzentrierte sich das Forschungsprogramm der übrigen Abteilungen überwiegend auf Kernphysik, Kernchemie und Strahlenchemie,[14][15] häufig unter Zuhilfenahme der Großforschungseinrichtungen. Die biomedizinische Forschung erhielt zunächst vergleichsweise wenige Ressourcen. Die Pläne des ersten Leiters des Medizin-Departments, William Sunderman, ein Lehrkrankenhaus im Labor einzurichten, wurden nicht realisiert und Sunderman verließ das Labor bereits im Jahr 1948. Auch das Biologie-Department hatte anfangs große Schwierigkeiten, ein Forschungsprogramm ins Leben zu rufen. Im Verlauf desselben Jahres konnte das Labor dann jedoch Donald Van Slyke, einen prominenten Wissenschaftler an der Rockefeller University, zunächst als Berater, dann als stellvertretenden Leiter des Departments engagieren. Van Slyke initiierte eine Reihe neuer Forschungsprojekte, insbesondere die Anwendung von Radionukliden in der biomedizinischen Forschung.[16]
Die National Synchrotron Light Source (NSLS) bestand aus zwei Elektronenspeicherringen: dem sogenannten Vakuum-Ultraviolett (VUV)-Ring mit circa 20 Strahllinien und einem Ring zur Erzeugung harter Röntgenstrahlung (X-Ray Ring) mit circa 60 Strahllinien. Der Umfang des VUV-Rings betrug 51 m, der des X-Ray Rings 170 m.[33] Die Inbetriebnahmen des VUV-Rings und des X-Ray-Rings erfolgten 1982 bzw. 1984, und der Bau wurde 1984 bzw. 1986 abgeschlossen. Die Baukosten beliefen sich auf etwa 160 Millionen US-Dollar.[34]
Die Elektronen wurden in einem Linearbeschleuniger auf eine Energie von 120 MeV gebracht, dann in einem Booster auf 750 MeV beschleunigt und dann in den VUV- bzw. X-Ray-Ring eingespeist, wo sie auf ihre Endenergie von 750-MeV bzw. 2,5-GeV beschleunigt wurden. Zur Fokussierung des Elektronenstrahls in den Speicherringen und zur Maximierung der Strahlungsintensität konzipierten die BNL-Physiker Renate Chasman und George Kenneth Green ein reguläres Arrangement von Dipol- und Quadrupol-Magneten, welches heute als „Chasman-Green Lattice“ oder „Double Bend Achromat (DBA) Lattice“ bekannt ist und in vielen Synchrotron-Quellen verwendet wird.[35] Aufgrund dieses Designs war die NSLS lange Zeit die intensivste Synchrotron-Röntgenquelle der Welt.[36] Die Wellenlänge der Synchrotronstrahlung reichte von 0,1 bis 30 Å.[37]
Die Strahllinien wurden entweder von BNL-Wissenschaftlern („Facility Beamlines“) oder von auswärtigen Institutionen („Participating Research Teams“) betrieben, die 50 bzw. 25 Prozent der Strahlzeit externen Nutzern über ein Antragsystem zur Verfügung stellten. Die an der NSLS praktizierten Messverfahren waren sehr vielfältig und reichten von der Röntgen-Absorptionsspektroskopie bis hin zur hochauflösenden Kristallographie. Jährlich besuchten über 2000 Wissenschaftler die Einrichtung.[34]
Im Jahr 2014 wurde die NSLS abgeschaltet und durch die leistungsfähigere NSLS-II ersetzt.[38]
Jahr | Nobelpreisträger | Fachbereich | Begründung für die Preisvergabe | Rolle des BNL |
---|---|---|---|---|
1957 | Tsung-Dao Lee & Chen Ning Yang | Physik | „für ihre grundlegenden Forschungen über die Gesetze der sogenannten Parität, die zu wichtigen Entdeckungen über die Elementarteilchen führten“ | Yang war 1957 am BNL angestellt, zusammen mit Lee interpretierte er in ihrer Arbeit am BNL durchgeführte Experimente. |
1976 | Samuel Chao Chung Ting & Burton Richter | Physik | „für ihre führenden Leistungen bei der Entdeckung eines schweren Elementarteilchens neuer Art“, dem J/ψ-Meson | Das Schlüsselexperiment wurde 1974 am Alternating Gradient Synchrotron des BNL durchgeführt. |
1980 | James W. Cronin & Val L. Fitch | Physik | „für die Entdeckung von Verletzungen fundamentaler Symmetrieprinzipien im Zerfall von neutralen K-Mesonen“, die CP-Verletzung | Das Schlüsselexperiment wurde 1963 am Alternating Gradient Synchrotron des BNL durchgeführt. |
1988 | Leon Lederman, Melvin Schwartz & Jack Steinberger | Physik | „für die Neutrinostrahlmethode und die Demonstration der Dublettstruktur der Leptonen durch die Entdeckung des Myon-Neutrinos“ | Das Schlüsselexperiment wurde 1962 am Alternating Gradient Synchrotron des BNL durchgeführt. |
2002 | Raymond Davis junior & Masatoshi Koshiba; Riccardo Giacconi | Physik | „für bahnbrechende Arbeiten in der Astrophysik, insbesondere für den Nachweis kosmischer Neutrinos“ | Davis Jr., der mit Koshiba den Nobelpreis für ebendiese Entdeckung teilte, war zu jener Zeit am BNL angestellt. Giacconi hingegen erhielt den Nobelpreis für eine separate Erkenntnis. |
2003 | Roderick MacKinnon; Peter Agre | Chemie | „für die Entdeckung der Wasserkanäle in Zellmembranen“ | MacKinnon, der zu dieser Zeit Visiting Researcher am BNL war, erhielt für ebendiese Entdeckung den Nobelpreis. Agre hingegen erhielt den Nobelpreis für eine separate Erkenntnis. |
2009 | Venkatraman Ramakrishnan, Thomas A. Steitz & Ada E. Yonath | Chemie | „für die Studien zur Struktur und Funktion des Ribosoms“ | Ramakrishnan und Steitz führten an der NSLS des BNL wichtige Experimente durch. |
Das Labor ist eines von zehn großen von der US-Regierung betriebenen Laboratorien und wird vom United States Department of Energy beaufsichtigt und fast vollständig finanziert. Dabei belief sich das Budget des BNL 2017 auf etwa 582 Millionen US-Dollar (circa 521 Millionen Euro). Geleitet wird das Labor von einem Direktor und zwei Vizedirektoren (Deputy Directors), die für Forschung bzw. die Verwaltung des Labors zuständig sind. Der amtierende Direktor Doon Gibbs wurde im Dezember 2012 zunächst zum Interimsdirektor und 2013 zum Labordirektor ernannt.[82]
Das Labor beschäftigt etwa 3000 festangestellte Mitarbeiter. Jährlich besuchen ca. 4500 Nutzer die Großforschungseinrichtungen des Labors.[83] Das Labor ist in insgesamt acht Direktorate gegliedert, die jeweils von einem Associate Laboratory Director (ALD) geleitet werden.[84] Die Direktorate sind in Abteilungen (Departments bzw. Divisions für größere bzw. kleinere Organisationseinheiten) untergliedert; die Abteilungsleiter unterstehen dem jeweiligen ALD. In den Forschungsabteilungen besteht die unterste Organisationsebene aus Forschungsgruppen, in der Regel mit einem Senior Scientist als Gruppenleiter. Ein weiteres Element der Organisation sind Stabsstellen, die direkt dem Labordirektor zugeordnet sind. Dazu gehören unter anderem das Planungsbüro, das Justiziariat, die Innenrevision und die Spionageabwehr.
Direktorat | ALD | Departments/Divisions/Offices |
---|---|---|
Computational Science Initiative | Kerstin Kleese van Dam | Computer Science and Mathematics, Computing for National Security, Scientific Data and Computing Center, Center for Data-Driven Discovery, Computational Science Laboratory |
Nuclear and Particle Physics | Berndt Mueller | Colliders & Accelerators (inkl. NASA Space Radiation Laboratory[85]), Physics, Instrumentation, Superconducting Magnets |
Energy and Photon Sciences | James Misewich | Chemistry, Condensed Matter Physics and Materials Sciences, Sustainable Energy Technologies |
Environment, Biology, Nuclear Science & Nonproliferation | Martin Schoonen | Biology, Environmental and Climate Sciences, Nonproliferation and National Security |
Business Services | George Clark | Budget, Fiscal Services, Procurement and Property Management, Information Technology |
Facilities & Operations | Tom Daniels | Laboratory Protection, Modernization Project, Production, Energy and Utilities |
Environment, Safety & Health | Steven Coleman | Environmental Protection, Radiological Control, Safety and Health Services |
Human Resources | Robert Lincoln | Guest, User and Visitor Center, Diversity and International Services, Benefits, Labor Relations, Talent Management, Compensation and HRIS, Occupational Medicine |
Der Relativistic Heavy Ion Collider ist der weltweit erste Teilchenbeschleuniger, der spin-polarisierte Protonen speichern, beschleunigen und kollidieren kann.[86] Am RHIC zirkulieren schwere Ionen und spin-polarisierte Protonen durch einen Doppelspeicherring (bestehend aus zwei unabhängigen, parallel verlaufenden Speicherringen), der einen Umfang von rund 3834 Metern besitzt[87] und sechseckig geformt ist. Dort werden mit Hilfe von 1740 supraleitenden,[88] aus Titan-Niob-Legierungen gefertigten Dipolmagneten der Feldstärke 3,45 Tesla[89] gespeicherte Partikel abgelenkt bzw. fokussiert.
Bei Experimenten zum Quark-Gluon-Plasma werden Ionen hoher Masse durch drei Vorbeschleuniger (den Electron Beam Ion Source Accelerator, einen Booster und das Alternating Gradient Synchrotron)[32] auf 99,995-prozentige Lichtgeschwindigkeit beschleunigt[90] und schließlich in einen der RHIC-Speicherringe eingespeist. In den beiden RHIC-Speicherringen bewegen sich die Ionen dann in entgegengesetzter Richtung und können an einem Kreuzungspunkt kollidieren. Gegenwärtig beträgt die Schwerpunktsenergie bei Gold-Gold-Kollisionen 200 GeV.[91] Die daraus resultierende hohe Energie heizt die Kerne auf eine Temperatur von bis zu 4 Billionen Kelvin auf, wodurch Bedingungen unmittelbar nach dem Urknall nachgebildet werden können. Aus der Art des Zerfalls kann man neue Erkenntnisse über diese Bedingungen erhalten. Wenn die schweren Ionen aufeinandertreffen, werden die Quarks und Gluonen aus der starken Bindung in den Protonen befreit und können sich durch die extrem heißen kollidierenden Atomkerne frei bewegen. Daraus entsteht das Quark-Gluon-Plasma, das bis heute am RHIC intensiv erforscht wird. Die während derartigen Kollisionen entstandene Materie äußerst hoher Temperatur und Dichte besteht nur etwa 10−22 Sekunden.[90] RHIC war der erste und lange Zeit der einzige Beschleuniger, an dem das Quark-Gluon-Plasma beobachtet werden konnte. Mittlerweile sind solche Messungen allerdings auch am Large Hadron Collider des Forschungszentrums CERN möglich.[92]
Für die Experimente mit spin-polarisierten Protonen nimmt der unpolarisierte Proton-Primärstrahl beim Durchgang durch eine optisch gepumpte Rb-Gaszelle spin-polarisierte Elektronen auf. Die Spinpolarisation der Elektronen wird durch die Hyperfein-Wechselwirkung auf die Protonen übertragen, und die Elektronen werden beim Durchgang durch eine Na-Gaszelle wieder entfernt.[93] Die spin-polarisierten Protonen werden zuerst im LINAC vorbeschleunigt und dann – analog zu den Schwerionen – im Booster und im AGS auf ihre Endenergie beschleunigt.[32] Durch die Experimente sollen die Beiträge von Quark- und Gluonenspins sowie deren Orbitalbewegung zum Gesamtspin des Protons bestimmt werden.[86] Die Schwerpunktsenergie bei Proton-Proton-Kollisionen beträgt gegenwärtig 200 GeV.[94]
Vor der Inbetriebnahme von RHIC kursierten Befürchtungen, dass die hohen Kollisionsenergien zur Bildung von schwarzen Löchern führen könnte,[95] die allerdings zunächst durch Physik-Nobelpreisträger Frank Wilczek, dann durch ein vom damaligen BNL-Direktor John Marburger einberufenes Komitee widerlegt wurden. Eines der ins Feld geführten Argumente beruht darauf, dass der Mond schon seit seiner Entstehung ständig von kosmischen Strahlen getroffen wird, die eine wesentlich höhere Energie als die schweren Ionen im RHIC haben, ohne dass ein schwarzes Loch entstanden ist.[96]
Im Januar 2020 gab das Department of Energy bekannt, dass der Electron Ion Collider (EIC) am Brookhaven National Laboratory errichtet werden soll. Im EIC sollen Elektronen und Ionen aus separaten Beschleunigern zu hochenergetischen Stößen zusammengeführt werden. Derzeitige Planungen sehen vor, zur Beschleunigung der Ionen einen der beiden RHIC-Speicherringe zu verwenden.[97]
Die Planungen für ein neues Synchrotron als Ersatz und Weiterentwicklung der im Jahr 2014 abgeschalteten NSLS begannen im Jahr 2005. Der Bau der National Synchrotron Light Source II (NSLS-II) begann vier Jahre später und wurde im Jahr 2015 vollendet. Die Elektronenenergie im Speicherring beträgt 3,0 GeV. Die Konstruktion der NSLS-II basiert auf einem DBA Lattice, wie bereits die NSLS. Der Umfang des Rings ist mit 792 Metern allerdings beinahe fünffach größer. Die Energie der emittierten Photonen reicht von ca. 0,1 bis 300 keV. Durch Verwendung optimierter Wiggler und Undulatoren wird Synchrotronstrahlung mit einer Flussdichte von über 1015 Photonen pro Sekunde mal Quadratmeter in allen Spektralbereichen erzeugt,[98] das heißt die Flussdichte ist ca. 10000-mal höher als die der NSLS[99] und vergleichbar mit anderen Synchrotrons der dritten Generation, wie zum Beispiel PETRA-III am Forschungszentrum DESY in Hamburg und die European Synchrotron Radiation Facility (ESRF) in Grenoble.[100][101] Als Leistungsziele der NSLS-II wurden vor Projektbeginn eine räumliche Auflösung von ca. 1 nm, spektrale Auflösung von 0,1 meV und Messempfindlichkeit von einem einzelnen Atom angegeben.[102] Die Kosten für den Bau der Anlage beliefen sich auf etwa 912 Millionen US-Dollar.[103]
Die Anlage besitzt aktuell insgesamt 28 Strahllinien, eine weitere Strahllinie befindet sich im Aufbau.[104] Anvisiert sind insgesamt 58 aktive Strahllinien bei Bauabschluss.[105] Zugang für externe Nutzer wird über ein Antragssystem vergeben. Im Jahr 2018 führten 1300 Wissenschaftler Experimente an der NSLS-II durch.[106]
Das CFN wurde im Jahr 2009 gegründet[107] und ist eines von derzeit fünf zentral vom Department of Energy geförderten Nanoscale Science and Engineering Centers,[108] die Forschung und Entwicklung in den Nanowissenschaften betreiben. Die Forschung am CFN konzentriert sich auf Katalyse, Brennstoffzellen und Photovoltaik.[109] Das CFN stellt mehrere Forschungseinrichtungen für externe Wissenschaftler zur Verfügung. Darunter befinden sich Reinräume für Nanostrukturierungsverfahren auf einer Gesamtfläche von ca. 500 m², Syntheselabors für organische und anorganische Nanomaterialien, Spektrometer für Röntgenabsorptions- und Emissionsspektroskopie, Elektronen- und Tunnelmikroskope, sowie eine Rechner-Infrastruktur zur numerischen Berechnung von Materialeigenschaften. Die Bewilligung von Mess- bzw. Rechenzeit an diesen Einrichtungen erfolgt durch ein Antragssystem. Im Jahr 2018 nutzten 581 Wissenschaftler das CFN.[107]
Das Hochleistungs-Rechenzentrum am BNL geht ursprünglich auf die „RHIC & ATLAS Computing Facility“ (RACF) zurück, die im Jahr 1997 gegründet wurde, um Experimente am RHIC und am ATLAS-Detektor des Large Hadron Collider am CERN zu unterstützen.[110] In den RACF-Rechnern wurden Daten aus Teilchenkollisionen gespeichert, analysiert und dann zur weiteren Analyse an die Mitglieder der jeweiligen Detektor-Konsortien verteilt. Die Rechner-Infrastruktur wurde in den Folgejahren kontinuierlich ausgebaut, und die Anwendungsfelder wurden unter anderem auf Biologie, Medizin, Material- und Energieforschung sowie Klimamodellierung erweitert. Insbesondere wurde im Jahr 2007 der Supercomputer „New York Blue/L“ und im Jahr 2009 der „New York Blue/P“ in Betrieb genommen, die beide zur Blue-Gene-Reihe von IBM gehören. Im Jahr 2011 kam ein Rechner der „Blue Gene Q“-Klasse hinzu, und die älteren „New York Blue“-Rechner wurden in den Jahren 2014 bzw. 2015 abgeschaltet.[111]
Die aktuellen Schwerpunkte der Forschungsabteilungen richten sich stark an den Großforschungseinrichtungen am BNL aus. In der Hochenergie- und Astrophysik koordinieren BNL-Wissenschaftler darüber hinaus mehrere große Experimente an externen Forschungszentren. Neben den Großforschungseinrichtungen verfügen die Forschungsabteilungen über umfangreiche molekularbiologische Laboratorien sowie Materialsynthese- und Charakterisierungseinrichtungen.
Das BNL hat die folgenden strategischen Forschungsschwerpunkte definiert:[112]
Ein Schwerpunkt der Grundlagenforschung am BNL ist die Physik von Quarks und Gluonen, die durch die Quantenchromodynamik (QCD) beschrieben wird. Durch die Analyse von Daten aus Hochenergie-Kollisionen schwerer Ionen am RHIC gewinnen BNL-Wissenschaftler beispielsweise Aufschlüsse über die hydrodynamischen Eigenschaften[114] des Quark-Gluon-Plasmas und dessen Phasendiagramm, inklusive des Phasenüberganges zur normalen Materie in Analogie zum frühen Universum.[115] In weiteren aktuellen Forschungsarbeiten werden am BNL Anti-Nukleonen und deren Wechselwirkungen untersucht.[116][117]
Zu diesem Themenbereich zählen die astrophysikalischen Großprojekte, an denen BNL-Physiker beteiligt sind, insbesondere das Large Synoptic Survey Telescope[118] zur Abbildung des gesamten sichtbaren Südsternhimmels sowie die BOSS-Kollaboration (Baryon Oscillation Spectroscopic Survey)[119] zur Bestimmung der Verteilung Dunkler Energie im Universum. Ferner werden die BNL-Beteiligung am Daya-Bay-Experiment[120] zu Neutrino-Oszillationen sowie am ATLAS-Detektor am LHC[121] zur Untersuchung des Higgs-Bosons diesem Forschungsschwerpunkt zugerechnet.
Die Entwicklung Photonen-basierter Methoden zur Aufklärung von Materialstrukturen ist ein abteilungsübergreifender Forschungsschwerpunkt des BNL. Zu diesem Zweck betreiben eine Reihe von BNL-Forschungsgruppen Strahllinien an der NSLS-II. Das Forschungsspektrum reicht dabei von Untersuchungen zur Proteinstruktur in den Biowissenschaften bis hin zu bildgebenden Verfahren für elektronische Materialien und Bauelemente in der Festkörperforschung. In der Energie- und Umweltforschung werden überdies zeit- und ortsaufgelöste Methoden für in-situ Untersuchungen entwickelt.[122]
Ein vielfältiger, stark interdisziplinärer Forschungsschwerpunkt des BNL hat zum Ziel, das Wechselspiel zwischen dem Klimawandel, den Ökosystemen der Erde sowie möglichen Initiativen zur nachhaltigen Energieversorgung zu verstehen sowie Strategien zur Eindämmung der Erderwärmung und zur Adaption an klimatische Veränderungen zu erarbeiten. Dazu erheben BNL-Forscher quantitative Daten zur Treibhausgas-Emissionen, optimieren Klimamodelle und entwickeln neue Biokraftstoffe.[123]
Die Kernziele dieses Forschungsschwerpunkts sind neue Verfahren zur Erzeugung, Transport, Speicherung und Nutzung von Energie. Die Forschungsaktivitäten in diesem Themenfeld reichen von Grundlagenforschung zur chemischen Energiekonversion, Katalyse und Supraleitung bis hin zur Integration erneuerbarer Energien in das Stromnetz.[124]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.