Top-Fragen
Zeitleiste
Chat
Kontext

Cauchyscher Grenzwertsatz

Satz über konvergente Folgen Aus Wikipedia, der freien Enzyklopädie

Remove ads

Der Cauchysche Grenzwertsatz wurde erstmals von dem französischen Mathematiker Augustin Louis Cauchy formuliert. Er ist ein Spezialfall des allgemeineren Satzes von Cesàro–Stolz und besagt: Aus der Konvergenz einer Zahlenfolge folgt die Konvergenz der Cesàro-Mittel der Folge gegen denselben Grenzwert. Oder: Aus    folgt  .[1][2]

Remove ads

Verwandte Resultate und Erweiterungen

Zusammenfassung
Kontext

Betrachtet man statt des gewöhnlichen arithmetischen Mittels ein gewichtetes Mittel, so folgt aus der Konvergenz der ursprünglichen Folge auch die Konvergenz der gewichteten Mittel, das heißt, es gilt der folgende Satz:[1][2]

Sei eine beliebige Folge mit und eine Folge positiver Zahlen mit . Dann gilt auch: .

Für das geometrische Mittel gilt ebenfalls ein analoger Satz:[1][2]

Sei eine Folge mit , . Dann gilt auch:   .

Remove ads

Beweis des Cauchyschen Grenzwertsatzes

Sei beliebig und so gewählt, dass    ist für alle .
Wegen    gibt es ein    mit     für   .

Für alle folgt dann

[2]
Remove ads

Literatur

  • Harro Heuser: Lehrbuch der Analysis – Teil 1, 17-te Auflage, Vieweg + Teubner 2009, ISBN 978-3-8348-0777-9, S. 176–179
  • Konrad Knopp: Theorie und Anwendung der unendlichen Reihen. Springer, 5. Auflage, Berlin 1964, S. 73–79 (online)
  • Sen-Ming: Note on Cauchy's Limit Theorem. In: The American Mathematical Monthly, Band 57, Nr. 1 (Jan., 1950), S. 28–31 (JSTOR)

Einzelnachweise

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads