Top-Fragen
Zeitleiste
Chat
Kontext
EXPSPACE
eine Komplexitätsklasse (exponetieller Platz) Aus Wikipedia, der freien Enzyklopädie
Remove ads
In der Komplexitätstheorie steht EXPSPACE (Exponential Space) für die Komplexitätsklasse der Entscheidungsprobleme, die von einer deterministischen Turingmaschine in durch Platz entschieden werden können, wobei ein beliebiges Polynom ist. Betrachtet man nicht-deterministische Turingmaschinen, so erhält man die Klasse NEXPSPACE. Nach dem Satz von Savitch gilt EXPSPACE = NEXPSPACE.
In der DSPACE / NSPACE-Notation ausgedrückt gilt also:
Remove ads
Beziehung zu anderen Komplexitätsklassen
Die folgenden Beziehungen sind bekannt:
und darüber hinaus PSPACE EXPSPACE
Remove ads
Vollständigkeit
Es gibt EXPSPACE-vollständige Probleme. Ein Beispiel ist das Problem festzustellen, ob zwei gegebene reguläre Ausdrücke die gleiche Sprache erzeugen, wobei die Ausdrücke nur die Operatoren Vereinigung, Verkettung, Kleenesche Hülle und Verdopplung enthalten.[1] In den üblichen Notationen regulärer Ausdrücke wären also nur
- Vereinigung:
(x|y)
, erkenntx
odery
, - Verkettung:
xy
, erkenntx
und danny
, - Kleenesche Hülle:
x*
, erkenntx
beliebig oft, ggf. gar nicht, und - Dopplung:
x{2}
, erkenntx
genau zweimal,
erlaubt, wobei x
und y
bereits nach diesem Schema korrekt gebildete Ausdrücke oder Literale aus dem gegebenen Alphabet sind. Die Zeichen (
, |
, )
, *
und {2}
werden als nicht Teil des Literal-Alphabets aufgefasst.
Die Dopplung ist nur ein Symbol mehr, wohingegen das Verketten von x
mit sich selbst die Größe der Eingabe maßgeblich erhöht.
Dieselbe Frage ohne Kleenesche Hülle stellt ein NEXPTIME-vollständiges Problem dar.
Remove ads
Literatur
- Christos H.Papadimitriou: Computational Complexity. Addison-Wesley, Reading/Mass, 1995, ISBN 978-0-201-53082-7, 20.1 And Beyond... (englisch).
Weblinks
- EXPSPACE. In: Complexity Zoo. (englisch)
Einzelnachweise
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads