Top-Fragen
Zeitleiste
Chat
Kontext

Exponentialsumme

Aus Wikipedia, der freien Enzyklopädie

Remove ads

Eine Exponentialsumme ist in der analytischen Zahlentheorie eine endliche Summe der Form

für ein , wobei eine (üblicherweise glatte) Funktion und ist.

Exponentialsummen werden insbesondere in der russischen Literatur (z. B. bei Iwan Winogradow) auch als trigonometrische Summen bezeichnet.

Ist ein reelles Polynom, so bezeichnet man auch als Weyl-Summe, benannt nach Hermann Weyl.[1]

Remove ads

Eigenschaften

Zusammenfassung
Kontext

Die Funktion nennt man additiver Charakter auf , nennt man Amplitudenfunktion und Länge der Summe.

Der Shift des Argumentes wird mit

notiert, wobei nun auf dem Interval definiert sein muss.

Komplexe Verallgemeinerung

Exponentialsummen können für eine reelle Folge auch auf

verallgemeinert werden. Dies entspricht der obigen Definition der Exponentialsumme mit einer komplexen Funktion , denn es gilt

und somit gilt

Noch allgemeiner definiert man

für eine beliebige komplex-wertige Funktion und eine reell-wertige Funktion .[2]

Remove ads

Geschichte

Weyl veröffentlichte 1916 als Erster eine Anwendung von Exponentialsummen in der Zahlentheorie (siehe Gleichverteilung modulo 1).[3] 1921 entwickelte er eine Methode um Weyl-Summen abzuschätzen, welche heute als Weyls Methode bezeichnet wird.[4]

1921[5] und 1922[6] veröffentlichte Johannes van der Corput zwei Arbeiten, aus der eine weitere Methode zur Abschätzung von Exponentialsummen hervorging und heute als Van der Corputs Methode bezeichnet wird.

1935[7] und 1936[8] veröffentlichte Iwan Winogradow eine weitere Methode zur Abschätzung von Weyl-Summen.[9] Zusätzlich veröffentlichte er 1937 eine Methode zur Abschätzung von Exponentialsummen mit Primzahlen.[10][11] Beide Methoden werden heute als Winogradows Methode bezeichnet.

Remove ads

Literatur

  • Henryk Iwaniec und Emmanuel Kowalski: Analytic Number Theory. In: American Mathematical Society (Hrsg.): Colloquium Publications. Band 53, 2004, ISBN 0-8218-3633-1, S. 197–227.
  • Arkhipov, G. I. und Chubarikov, V. N. und Karatsuba, A. A.: Trigonometric sums in number theory and analysis. Transl. from the Russian. In: Berlin: Walter de Gruyter (Hrsg.): De Gruyter Expo. Math. Band 39, 2004, ISBN 3-11-019798-7, doi:10.1515/9783110197983.

Einzelnachweise

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads