Top-Fragen
Zeitleiste
Chat
Kontext

Fehler-in-den-Variablen-Modell

Aus Wikipedia, der freien Enzyklopädie

Fehler-in-den-Variablen-Modell
Remove ads

In der Statistik sind Fehler-in-den-Variablen-Modelle, auch Messfehlermodelle genannt, Regressionsmodelle für Regression mit stochastischen Regressoren, in der entweder die Antwortvariable oder einige erklärende Variablen mit Fehlern gemessen werden.[1]

Thumb
Darstellung einer Regressionsabschwächung durch eine Reihe von Regressionsschätzungen in Fehler-in-den-Variablen-Modellen. Zwei Regressionslinien (rot) begrenzten den Suchraum aus pontenziellen Regressionsfunktionen.
Remove ads

Klassisches Fehler-in-den-Variablen-Modell

Zusammenfassung
Kontext

Gegeben sei im einfachsten Fall ein einfaches lineares Regressionsmodell[2]:

.

Im klassischen Fehler-in-den-Variablen-Modell wird angenommen, dass nur mit zufälligem Fehler beobachtet werden kann, d. h. man hat dann den stochastischen Regressor . Für die Messfehler wird angenommen, dass sie unabhängig und identisch verteilt mit Erwartungswert null und Varianz , unkorreliert mit und unkorreliert mit der Störgröße sind.

Remove ads

Konsequenzen von Fehlern in den Variablen

Messfehler in den erklärenden Variablen führen dazu, dass die gewöhnliche Kleinste-Quadrate-Schätzung nicht konsistent ist. Intuitiv betrachtet kommt es während des Trainings des Modells zu einer Fehlerfortpflanzung, was ohne weitere Gegenmaßnahmen die Qualität des Modells beeinträchtigen kann.

Einzelnachweise

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads