Loading AI tools
Menge aller geordneten Paare (x,f(x)) Aus Wikipedia, der freien Enzyklopädie
Als Funktionsgraph oder kurz Graph (seltener: Funktionsgraf oder Graf) einer Funktion bezeichnet man in der Mathematik die Menge aller geordneten Paare aus den Elementen der Definitionsmenge und den zugehörigen Funktionswerten .
Mitunter können diese Paare als Punkte in der Zeichenebene oder im Anschauungsraum interpretiert werden, sie werden auch Kurve, Kurvenverlauf oder ebenfalls Funktionsgraph genannt.
Der Graph einer Funktion mit Definitionsmenge und Zielmenge ist die Menge[1]
Der Graph ist somit eine spezielle Teilmenge des kartesischen Produkts aus Definitions- und Zielmenge. Er besteht aus allen Paaren, bei denen die erste Komponente ein Element der Definitionsmenge und die zweite Komponente das diesem Element durch die Funktion zugeordnete Element der Zielmenge ist.
Der Graph einer Funktion mit ist eine Teilmenge von und kann somit als Punktmenge bzw. geometrische Figur in der Ebene aufgefasst werden. Beispiele sind:
Die Graphen von Funktionen oder sind Teilmengen von und können als räumliche Figuren ebenfalls noch bildlich dargestellt werden. Beispiele sind:
In mengentheoretischen Definitionen von Funktionen werden diese oftmals gerade als Menge der Stelle-Wert-Paare definiert, das heißt, der Graph wäre nichts anderes als die Funktion selbst, also . Auf diese Kuriosität wies bereits 1960 Jean Dieudonné hin:[2]
Bei mathematischen Betrachtungen, die nicht direkt im Kontext der mengentheoretischen Fundierung der mathematischen Begriffe stehen, setzt man jedoch in der Regel keine Mengenstruktur einer Funktion voraus, sondern fordert lediglich die Definiertheit des Bildes zu einer gegebenen Stelle. Mengenoperationen werden dann nicht auf Funktionen ausgeführt (etwa würde dann meist nicht als sinnvoller Ausdruck angesehen), in einigen Fällen ist es jedoch gerade praktisch eine Funktion als Menge zu betrachten mit den auf Mengen definierten Operationen und Eigenschaften; diese Betrachtung geschieht über den Graphen der Funktion. Neben der Möglichkeit, eine Funktion dadurch als geometrische Figur zu betrachten, seien hier als weitere Beispiele genannt:
Die graphische Darstellung ist kein mathematisches Objekt. Sie dient im Rahmen der Mathematik der Veranschauung und lässt Mutmaßungen über die Eigenschaften einer Funktion zu.
In der Darstellung der Graphen von unstetigen Funktionen oder von Funktionen mit Definitionslücken wird häufig durch angedeutet, dass ein Punkt zum Graphen gehört, und durch , dass ein Punkt nicht Teil des Graphen ist. Ein Beispiel ist die Illustration der Vorzeichenfunktion (auch „Signumfunktion“).
Drei Beispiele für Funktionsgraphen:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.