Top-Fragen
Zeitleiste
Chat
Kontext

Itō-Formel

mathematischer Satz Aus Wikipedia, der freien Enzyklopädie

Remove ads

Die Itō-Formel (auch Itō-Döblin-Formel; selten auch Lemma von Itō), benannt nach dem japanischen Mathematiker Itō Kiyoshi, ist eine zentrale Aussage in der stochastischen Analysis. In seiner einfachsten Form ist es eine Integraldarstellung für stochastische Prozesse, die Funktionen eines Wiener-Prozesses sind. Es entspricht damit der Kettenregel bzw. Substitutionsregel der klassischen Differential- und Integralrechnung.

Itô publizierte 1951 einen Beweis.[1]

Remove ads

Version für Wiener-Prozesse

Zusammenfassung
Kontext

Sei ein (Standard-)Wiener-Prozess und eine zweimal stetig differenzierbare Funktion. Dann gilt

Dabei ist das erste Integral als Itō-Integral und das zweite Integral als ein gewöhnliches Riemann-Integral (über die stetigen Pfade des Integranden) zu verstehen.

Für den durch für definierten Prozess lautet diese Darstellung in Differentialschreibweise

Remove ads

Version für Itō-Prozesse

Ein stochastischer Prozess heißt Itō-Prozess, falls

für zwei stochastische Prozesse , gilt (genaueres dazu unter stochastische Integration). In Differentialschreibweise:

Ist eine in der ersten Komponente einmal und in der zweiten zweimal stetig differenzierbare Funktion, so ist auch der durch definierte Prozess ein Itō-Prozess, und es gilt[2]

Hierbei bezeichnen und die partiellen Ableitungen der Funktion nach der ersten bzw. zweiten Variablen. Die zweite Darstellung folgt aus der ersten durch Einsetzen von und Zusammenfassen der - und -Terme.

Mehrdimensionale Version

Die Formel lässt sich auf Itō-Prozesse verallgemeinern. Sei in in der ersten und in den restlichen Variablen. Definiere dann gilt

Remove ads

Version für Semimartingale

Zusammenfassung
Kontext

Sei ein -wertiges Semimartingal und sei . Dann ist wieder ein Semimartingal und es gilt

Hierbei bedeutet:

  • der linksseitige Grenzwert,
  • das Integrationsgebiet bedeutet . Ein Semimartingal kann bei einen Sprung haben, das heißt und somit wird sicher gestellt, dass nur über integriert wird und der Anfangswert wird deshalb nicht über das Integral gedeckt.
  • der zugehörige Sprungprozess.
  • Mit wird die quadratische Kovariation der stetigen Anteile der Komponenten und bezeichnet.

Falls ein stetiges Semimartingal ist, verschwindet die letzte große Klammer nach dem Plus und es gilt .

Bemerkung

Schreibt man den Ausdruck aus, so erhält man für eine Funktion die Form

wobei .

Für das Stratonowitsch-Integral

Sei ein -Semimartingal und , dann ist ein Semimartingal und es gilt[3]

Remove ads

Version für Funktionen mit beschränkter quadratischer Variation

Zusammenfassung
Kontext

Hans Föllmer erweiterte die Formel von Itō auf (deterministische) Funktionen mit beschränkter quadratischer Variation.[4]

Sei eine reell-wertige Funktion und eine Càdlàg-Funktion mit endlicher quadratischer Variation. Dann gilt

Remove ads

Beispiele

  • Für gilt .
eine Lösung der stochastischen Differentialgleichung von Black und Scholes
ist.
Hierzu wählt man , also .
Dann ergibt die Formel mit :
  • Ist ein -dimensionaler Wiener-Prozess und zweimal stetig differenzierbar, dann gilt für
,
wobei den Gradienten und den Laplace-Operator von bezeichnen.
Remove ads

Unendlich-dimensionale Itō-Formeln

Es gibt verschiedene Varianten von Itō-Formeln für unendlich-dimensionale Räume (z. B. Pardoux[5], Gyöngy-Krylow[6], Brzezniak-van Neerven-Veraar-Weis[7]).

Siehe auch

Literatur

  • Philip E. Protter: Stochastic Integration and Differential Equations (2nd edition), Springer, 2004, ISBN 3-540-00313-4.

Einzelnachweise

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads