Divergenz des Gradienten Aus Wikipedia, der freien Enzyklopädie
Der Laplace-Operator ist ein mathematischer Operator, der zuerst von Pierre-Simon Laplace eingeführt wurde. Es handelt sich um einen linearen Differentialoperator innerhalb der mehrdimensionalen Analysis. Er wird meist durch das Zeichen , den Großbuchstaben Delta des griechischen Alphabets, notiert.
Der Laplace-Operator kommt in vielen Differentialgleichungen vor, die das Verhalten physikalischer Felder beschreiben. Beispiele sind die Poisson-Gleichung der Elektrostatik, die Navier-Stokes-Gleichungen für Strömungen von Flüssigkeiten oder Gasen und die Diffusionsgleichung für die Wärmeleitung.
Der Laplace-Operator ordnet einem zweimal differenzierbaren Skalarfeld die Divergenz seines Gradienten zu,
oder mit dem Nabla-Operator notiert
Das formale „Skalarprodukt“ des Nabla-Operators mit sich selbst ergibt also den Laplace-Operator. Vor allem im englischsprachigen Raum ist für den Laplace-Operator oft die Schreibweise zu finden.
Da der Divergenz-Operator und der Gradient-Operator unabhängig vom gewählten Koordinatensystem sind, ist auch der Laplace-Operator unabhängig vom gewählten Koordinatensystem. Die Darstellung des Laplace-Operators in anderen Koordinatensystemen ergibt sich mit der Kettenregel aus der Koordinatentransformation.
Im -dimensionalen euklidischen Raum ergibt sich in kartesischen Koordinaten
In einer Dimension reduziert sich der Laplace-Operator somit auf die zweite Ableitung:
Der Laplace-Operator einer Funktion kann auch als Spur ihrer Hesse-Matrix dargestellt werden:
Der Laplace-Operator kann auch auf Vektorfelder angewendet werden. Mit dem dyadischen Produkt „“ wird mit dem Nabla-Operator
definiert. Das Superskript steht für Transponierung. In der Literatur findet sich auch ein Divergenz-Operator, der sein Argument gemäß transponiert. Mit diesem Operator schreibt sich analog zum Skalarfeld:
Speziell in drei Dimensionen gilt mit dem Rotationsoperator
was mit der Graßmann-Identität begründet werden kann. Letztere Formel definiert den sogenannten vektoriellen Laplace-Operator.[1]
Für eine Funktion in kartesischen Koordinaten ergibt die Anwendung des Laplace-Operators
In Polarkoordinaten ergibt sich
oder
Für eine Funktion mit drei Variablen ergibt sich in kartesischen Koordinaten
In Zylinderkoordinaten ergibt sich
und in Kugelkoordinaten
Die Ableitungen der Produkte in dieser Darstellung können noch entwickelt werden, wobei sich der erste und zweite Term ändern. Der erste (radiale) Term kann in drei äquivalenten Formen geschrieben werden:
Entsprechend gilt für den zweiten Term:
Diese Darstellungen des Laplace-Operators in Zylinder- und Kugelkoordinaten gelten nur für den skalaren Laplace-Operator. Für den Laplace-Operator, der auf vektorwertige Funktionen wirkt, müssen noch weitere Terme berücksichtigt werden, siehe weiter unten den Abschnitt „Anwendung auf Vektorfelder“.
In beliebigen krummlinigen Orthogonalkoordinaten, zum Beispiel in sphärischen Polarkoordinaten, Zylinderkoordinaten oder elliptischen Koordinaten gilt dagegen für den Laplace-Operator die allgemeinere Beziehung
mit den durch
impliziert definierten Größen . Dabei haben nicht die , sondern die Größen die physikalische Dimension einer „Länge“, wobei zu beachten ist, dass die nicht konstant sind, sondern von , und abhängen können.
Für noch allgemeinere Koordinaten gilt die Laplace-Beltrami-Beziehung.
In einem kartesischen Koordinatensystem mit -, - und -Koordinaten und Basisvektoren gilt:
Bei Verwendung von Zylinder- bzw. Kugelkoordinaten ist die Differentiation der Basisvektoren zu beachten. Es ergibt sich in Zylinderkoordinaten
und in Kugelkoordinaten
Die zu den Laplace-Ableitungen der Vektorkomponenten hinzu kommenden Terme resultieren aus den Ableitungen der Basisvektoren.[2]
Beweis |
In Zylinderkoordinaten werden
|
In Kugelkoordinaten können die Basisvektoren
|