Top-Fragen
Zeitleiste
Chat
Kontext
Nagel-Punkt
gehört zu den besonderen Punkten eines Dreiecks Aus Wikipedia, der freien Enzyklopädie
Remove ads
Der Nagel-Punkt, benannt nach dem deutschen Mathematiker Christian Heinrich von Nagel (1803–1882), der 1835/36 die Existenz dieses Punktes aufzeigte, gehört zu den besonderen Punkten eines Dreiecks. Für ein gegebenes Dreieck ABC betrachtet man die Punkte D, E und F, in denen die Ankreise die Seiten des Dreiecks berühren. Verbindet man diese Berührpunkte mit den gegenüber liegenden Ecken des Dreiecks (also mit A, B bzw. C), so schneiden sich diese Verbindungsstrecken in einem Punkt N. Dieser wird als Nagel-Punkt des Dreiecks bezeichnet.[1]

Remove ads
Eigenschaften
- Betrachtet man außer dem Nagel-Punkt N des Dreiecks ABC auch den Inkreismittelpunkt I und den Schwerpunkt S, dann liegen die Punkte N, S und I auf einer Geraden, der Nagel-Geraden, und es gilt , wobei der Schwerpunkt S zwischen den Punkten N und I liegt.[2] In dieser Eigenschaft weist die Nagel-Gerade eine Analogie zur eulerschen Geraden auf.
- Der Spieker-Punkt ist der Mittelpunkt der Verbindungsstrecke von Nagel-Punkt und Inkreismittelpunkt und liegt somit ebenfalls auf der Nagel-Geraden.[2]
- Der Nagelpunkt und der Gergonne-Punkt sind isotomisch konjugiert.[3]
Remove ads
Koordinaten
Zusammenfassung
Kontext
Die trilinearen Koordinaten des Nagel-Punkts () sind (gleichwertig)
- oder
- .[3]
Die baryzentrischen Koordinaten sind (gleichwertig)
- oder
- .[3]
Dabei sind die Seitenlängen des Dreiecks und die Größen der Innenwinkel.
Remove ads
Literatur
- Peter Baptist: Historische Anmerkungen zu Gergonne- und Nagel-Punkt. In: Sudhoffs Archiv 71, 1987, 2, S. 230–233
- Roger A. Johnson: Advanced Euclidean Geometry. Dover 2007, ISBN 978-0-486-46237-0, S. 225–229 (Erstveröffentlichung 1929 bei der Houghton Mifflin Company (Boston) unter dem Titel Modern Geometry).
- Edwin Kozniewski, Renata A. Gorska: Gergonne and Nagel Points for Simplices in the n-Dimensional Space. Journal for Geometry and Graphics, Band 4, 2000, Nr. 2, S. 119–127
- Victor Thébault: Nagel Point in the Tetrahedron. The American Mathematical Monthly, Band 54, Nr. 5 (Mai, 1947), S. 275–276 (JSTOR:2305352)
Weblinks
Einzelnachweise
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads