Top-Fragen
Zeitleiste
Chat
Kontext
Nitrophosphat-Prozess
Aus Wikipedia, der freien Enzyklopädie
Remove ads
Der Nitrophosphat-Prozess, auch bekannt als Odda-Prozess, dient der industriellen Herstellung von verschiedenen Stickstoff- und Phosphordüngern aus Phosphatgesteinen, Salpetersäure und Ammoniak.
Geschichte
Erfunden wurde der Nitrophosphat-Prozess 1927 von Erling Johnson, angestellt in den Odda Schmelzwerken (Odda Smelteverk), in Odda, Norwegen. 1929 und 1930 wurde das Verfahren zum Patent angemeldet, dieses wurde 1932 erteilt.[1] Die Schmelzwerke setzten den Prozess jedoch nie selber ein und lizenzierten ihn an Norsk Hydro, BASF, Hoechst AG und DSM Dutch States Mines. Diese entwickelten ihn weiter und vergaben ihrerseits weitere Lizenzen. Zurzeit wird der Prozess noch von BASF, Yara International (hervorgegangen aus der Norsk Hydro), Borealis AG und GNFC Gujarat Narmada Valley Fertilisers verwendet.
Remove ads
Verfahren
Zusammenfassung
Kontext
Größere Vorkommen des Pflanzennährstoffes Phosphat finden sich in der Natur fast nur als schwer wasserlösliche Calciummineralien (Apatite), die für die Verwendung als Dünger erst in eine wasserlösliche Form überführt werden müssen. Üblicherweise wird dies durch einen Säureaufschluss und der Behandlung der entstandenen Phosphorsäure mit Ammoniak oder Ammoniumsalzen erreicht. Zwangsläufig muss eine Calciumverbindung als Nebenprodukt abgetrennt werden. Wenn diese Verbindung Calciumsulfat ist, spricht man hierbei von Phosphorgips.
Als erster Schritt wird eine Mischung aus gemahlenen Phosphatgesteinen und Calciumphosphaten aus dem Prozess in Salpetersäure aufgelöst.
Die Reaktion ist abgeschlossen, wenn das gesamte Gestein aufgelöst wurde oder keine Gasentwicklung von verdampfender Salpetersäure oder entstehenden nitrosen Gasen mehr feststellbar ist. Das nicht gelöste Gestein wird, je nach ursprünglichem Phosphatgehalt, mit frischem Apatit vermischt und weiter aufgeschlossen oder als Abfall aus dem Prozess entfernt.
Durch Zugabe von Natrium- oder Kaliumsalzen können gelöste Fluorosilicate als das entsprechende Alkalihexafluorosilicat gefällt und abgetrennt werden.[2]
Dies ist insbesondere dann notwendig, wenn man Calciumphosphate zur Verwendung als Viehfutter produziert.
Durch Abkühlen der Lösung auf unter 0 °C kristallisiert ein Teil des entstandenen Calciumnitrates als Tetrahydrat aus und wird abgetrennt. Bis zu 95 % des Calciums kann so in Form eines Stickstoffdüngers aus dem Prozess entfernt werden.[3] Dies ist ein großer Vorteil des Verfahrens, reduziert es doch die Menge der im weiteren Verlauf wieder ausgefällten Calciumphosphate, welche ein weiteres Mal mit Salpetersäure aufgeschlossen werden müssen.
Das gewonnene Calciumnitrat kann direkt als Dünger verwendet werden. Wegen seiner zerfließenden Kristalle und den sich daraus ergebenden Problemen bei Verarbeitung, Transport und Lagerung wird es meist zu leichter handhabbaren Düngern umgesetzt, dazu wird es in Wasser gelöst und Ammoniak und Kohlenstoffdioxid eingeleitet.
Wird vor dem Eindampfen der Lösung das entstandene Calciumcarbonat abgetrennt, erhält man reines Ammoniumnitrat, ansonsten Kalkammonsalpeter.
Die Mutterlauge des Aufschlusses enthält neben Phosphorsäure noch verschiedene Anteile an Salpetersäure und Calciumnitrat. Über die Menge des eingeleiteten Ammoniaks kann gesteuert werden, ob das Calcium als Calciumphosphat Ca3(PO3)2 oder Calciumhydrogenphosphat CaHPO4 ausfällt, daneben entstehen Ammoniumphosphat und Ammoniumnitrat.
Gibt man Kaliumsalze zu und dampft ein, erhält man einen homogenen Volldünger. Zum Eindampfen kann die starke Hitzeentwicklung der Neutralisation genutzt werden.[3] Sowohl Calciumphosphat als auch Calciumhydrogenphosphat können abfiltriert und dem ersten Prozessschritt zugeführt werden. Im Filterrückstand sind auch unlösliche Eisen- und Aluminiumverbindungen und, sofern Fluorid nicht entfernt wurde, Calciumfluorid vorhanden. Je nach Herkunft des ursprünglich verwendeten Minerals finden sich auch Verunreinigungen mit Schwermetallen oder anderen Spurenelementen. Uran kann dabei unter Umständen Konzentrationen erreichen, die die Abtrennung wirtschaftlich lohnenswert machen. Produkte aus der Zerfallsreihe von Uran wie Radium sind jedoch – wenn vorhanden – aufgrund ihrer Radiotoxizität ein Problem.
Separiertes Calciumhydrogenphosphat kann vor einem weiteren Säureaufschluss ein weiteres Mal mit Ammoniak behandelt werden, um nitratfreies Ammoniumphosphat zu erhalten.
Das ausgefallene Calciumphosphat wird abgetrennt und in den Aufschluss rückgeführt. Durch Eindampfen der Lösung erhält man das Diammoniumhydrogenphosphat.
Alternativ zum Ammoniak kann Ammoniumcarbonat eingesetzt werden, dann läuft die Reaktion aber nicht vollständig ab.
Auch hier wird der Rückstand wieder dem ersten Prozessschritt zugeführt und das Ammoniumhydrogenphosphat durch Eindampfen der Lösung erhalten.
Wird die Auskristallisation des Calciumnitrats nach dem Aufschluss so gesteuert, dass in der Lösung gleiche Stoffmengen an Calciumnitrat und Phosphorsäure enthalten sind, können über die Fällung als Calciumhydrogenphosphat und dessen Reaktion mit Ammoniak oder Ammoniumcarbonat Ammoniumnitrat und Ammoniumphosphat getrennt voneinander produziert werden.
In dieser Prozessvariante können durch Fällung des Calciumnitrates mit Alkali- und Erdalkalicarbonaten auch die entsprechenden Nitrate erhalten werden.
Es ist möglich, das Verfahren dahingehend zu optimieren, dass ohne Nebenprodukt das gesamte Calciumphosphat in Ammoniumphosphat umgesetzt wird. Dazu wird die Aufschlusslösung einer Destillation unterworfen und die Salpetersäure abgetrennt, welche wieder im ersten Prozessschritt verwendet wird.
Das Calciumdihydrogenphosphat wird mit Ammoniak oder Ammoniak und Ammoniumcarbonat behandelt, um Calciumphosphat und Ammoniumphosphat zu erzeugen.
Zur Erhöhung der Reaktionsgeschwindigkeit der Fällungen von Calciumphosphaten sollten sie bei erhöhter Temperatur und Druck mit einem Überschuss an Ammoniak oder Ammoniumcarbonat durchgeführt werden. Die überschüssigen Chemikalien werden nach der Reaktion durch Destillation rückgewonnen.
Innovativ an diesem Verfahren war, dass ein Volldünger ohne Verbrauch von Schwefelsäure oder Erzeugung von Gips als Nebenprodukt produziert werden konnte. Jedoch ist es durch den geringen Verkaufspreis der Nebenprodukte im Vergleich zur Produktion von Diammoniumhydrogenphosphat aus Ammoniak, Apatiten und Schwefelsäure nicht konkurrenzfähig, was durch den schwierigen Vergleich der Verfahren auf Fachtagungen diskutiert wurde.[4]
Remove ads
Darauf basierende weitere Patente
Remove ads
Literatur
- J. Steen; H. Aasum; T. Heggeboe: Kapitel 15 The Norsk Hydro Nitrophosphate Processin. In: F.T. Nielsson (Hrsg.): Manual of fertilizer processing. CRC Press, 1986, ISBN 0-8247-7522-8, S. 393–420.
Einzelnachweise
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads