Top-Fragen
Zeitleiste
Chat
Kontext

Primitive Matrix

Aus Wikipedia, der freien Enzyklopädie

Remove ads

Primitivität von Matrizen ist ein Konzept der linearen Algebra, welches insbesondere in der Theorie der positiven Eigenwerte Anwendung findet, siehe etwa Satz von Perron-Frobenius.

Definition

Eine quadratische Matrix heißt primitiv, wenn alle Einträge nichtnegativ sind und wenn es eine natürliche Zahl gibt, so dass alle Einträge von positiv sind.

Das kleinste solche wird als Exponent der primitiven Matrix bezeichnet.

Eigenschaften

  • Primitive Matrizen sind irreduzibel.
  • Wenn die -Matrix irreduzibel ist, dann ist (die Summe mit der Einheitsmatrix) eine primitive Matrix.
  • Für den Exponenten einer primitiven Matrix gilt , wobei den Grad des Minimalpolynoms bezeichnet.[1]

Beispiele

Die Matrix ist irreduzibel, aber nicht primitiv. Die Matrix ist primitiv.

Anwendungen

Literatur

  • E. Seneta: Non-negative matrices. An introduction to theory and applications. Halsted Press, New York, 1973.

Einzelnachweise

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads