Top-Fragen
Zeitleiste
Chat
Kontext

Satz von Thurston-Bonahon

Aus Wikipedia, der freien Enzyklopädie

Remove ads

Der Satz von Thurston-Bonahon ist ein häufig verwendeter Lehrsatz aus dem mathematischen Gebiet der 3-dimensionalen Topologie, benannt nach William Thurston und Francis Bonahon. Er präzisiert die Dichotomie zwischen geometrisch endlichen und geometrisch unendlichen Flächen in hyperbolischen 3-Mannigfaltigkeiten.

Formulierung des Satzes

Zusammenfassung
Kontext

Es sei eine hyperbolische 3-Mannigfaltigkeit von endlichem Volumen, und sei eine inkompressible, -inkompressible Fläche.

Dann ist entweder eine virtuelle Faser oder quasifuchssch.

Erläuterungen:

  • heißt geometrisch endlich, wenn das Bild von unter eine geometrisch endliche Gruppe ist; dies ist im Fall von Flächengruppen äquivalent dazu, dass eine quasifuchssche Gruppe ist.
  • heißt virtuelle Faser, wenn es eine endliche Überlagerung sowie ein Faserbündel mit Faser gibt. Der Satz von Thurston-Bonahon besagt insbesondere, dass jede geometrisch unendliche Fläche in einer hyperbolischen 3-Mannigfaltigkeit endlichen Volumens eine virtuelle Faser sein muss.
Remove ads

Geschichte

Der Satz von Thurston-Bonahon ergibt sich aus einer Kombination von Sätzen in Thurstons „Lecture Notes“[1] und Bonahons Habilitationsschrift[2] mit älteren Ergebnissen von Albert Marden.[3] Er wird weder bei Thurston noch bei Bonahon explizit erwähnt.

Der Satz wird in zahlreichen mathematischen Arbeiten zur Topologie von Flächen in 3-Mannigfaltigkeiten verwendet, explizite Formulierungen des Satzes finden sich zuerst bei Cooper-Long-Reid[4] und in allgemeinerer Form bei Canary.[5]

Remove ads

Einzelnachweise

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads