Top-Fragen
Zeitleiste
Chat
Kontext

Semiprimideal

Aus Wikipedia, der freien Enzyklopädie

Remove ads

Ein Semiprimideal ist ein Begriff aus der abstrakten Algebra. Er stellt eine Erweiterung des Begriffs des Primideals dar.

Definition

Im Folgenden sei R ein Ring mit Eins. Dann ist ein Ideal Q von R ein Semiprimideal, wenn es eine der folgenden äquivalenten Bedingungen erfüllt:[1]

  • Ist ein Ideal von R mit , dann ist .
  • Q ist ein Durchschnitt von Primidealen.
Remove ads

Eigenschaften

  • Ein Ring R heißt semiprim, wenn ein Semiprimideal ist. Dann ist die Abbildung , wobei das Produkt über alle Primideale gebildet wird, injektiv. Daher ist ein semiprimer Ring subdirektes Produkt primer Ringe, das heißt solcher, in denen das Nullideal prim ist.[2]
  • Ein Durchschnitt von Semiprimidealen ist wieder ein Semiprimideal.
  • Das Primradikal ist das kleinste Semiprimideal.
Remove ads

Einzelnachweise

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads