Top-Fragen
Zeitleiste
Chat
Kontext

Stichprobenfunktion

Funktion von Zufallsvariablen Aus Wikipedia, der freien Enzyklopädie

Remove ads

In der Statistik fasst eine Stichprobenfunktion, auch Stichprobenstatistik oder schlicht Statistik, Informationen aus einer Stichprobe in spezifischer Form als Funktion zusammen. Beispiele für Stichprobenfunktionen sind Schätzfunktionen, Prüfgrößen (Teststatistik, Testgröße, Testfunktion) oder die Grenze eines Konfidenzintervalls. Bekannte Stichprobenfunktionen sind das Stichprobenmittel, die Stichprobenvarianz sowie der Stichprobenmedian. Die Wahrscheinlichkeitsverteilung einer Stichprobenfunktion heißt auch Stichprobenverteilung.

Remove ads

Definition

Die Zufallsvariablen seien eine Stichprobe des Umfangs , weiterhin sei

eine messbare Funktion. Dann heißt die Zufallsvariable

eine Stichprobenfunktion.

Die Messbarkeit der Funktion garantiert, dass eine Zufallsvariable ist.

Remove ads

Beispiele

In der Statistik und Wahrscheinlichkeitstheorie häufig verwendete Stichprobenfunktionen sind die Summenvariable , die in diesem Zusammenhang auch Stichprobensumme[1] heißt, das Stichprobenmittel , , und .

Remove ads

Literatur

  • Papula, Lothar: Mathematik für Ingenieure und Naturwissenschaftler. 7. Auflage. 3: Vektoranalysis, Wahrscheinlichkeitsrechnung, Mathematische Statistik, Fehler- und Ausgleichsrechnung. Springer Vieweg, Wiesbaden 2016, ISBN 978-3-658-11924-9.

Einzelnachweise

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads