Top-Fragen
Zeitleiste
Chat
Kontext
Fahrzeuge für Zahnradbahnen
Aus Wikipedia, der freien Enzyklopädie
Remove ads
Als Fahrzeuge für Zahnradbahnen werden elektrische und dieselbetriebene Triebfahrzeuge und auch heute noch Dampflokomotiven eingesetzt. Selbstbremsende Personen- und Güterwagen können berg- und talseitg gekuppelt werden; Ungebremste Wagen aber nur bergseitig.
Allgemeines
Zusammenfassung
Kontext
Bei den bestehenden elektrischen Zahnradbahnen sind folgende drei Stromsysteme im Gebrauch:
- Gleichstrom mit verschiedenen Spannungen bei kurzen und mittleren Betriebslängen. Die Mehrzahl der Gleichstrombahnen verwendet eine Spannung von 1500 Volt. Sie erlaubt Abstände von vier bis fünf Kilometern zwischen den Gleichrichterstationen.
- Einphasenwechselstrom bei einigen reinen Zahnradbahnen und bei längeren gemischten Adhäsions-/Zahnradbahnen (siehe Liste von Zahnradbahnen). Die hohe Spannung des Wechselstroms erlaubt große Abstände zwischen den Umspannwerken, die Triebfahrzeuge benötigen jedoch einen Transformator, dessen hohe Masse nachteilig ist.
- Drehstrom bei den reinen Zahnradbahnen auf das Jungfraujoch, den Gornergrat, den la Rhune und den Corcovado. Klassische Drehstromtechnik benötigt zweipolige Oberleitungen, erlaubt jedoch einfache Rekuperationsbremsen, die aber auf der Bergfahrt keine höhere Geschwindigkeit als talwärts erlaubt.
Der Bau und Betrieb von Zahnradtriebfahrzeugen sind und waren technisch sehr anspruchsvoll. Im Vergleich zu Adhäsionsbahnen sind Grenzen gesetzt durch:
- enge Bögen, große Klimaunterschiede und rauer Winterbetrieb,
- Belastungsgrenzen der Zahnstange und der Zugvorrichtungen,
- Sicherheit gegen Entgleisen des Zuges auf der Talfahrt auch in engen Bögen bei Maximalgefälle.[1]
Wichtigster Hersteller von Zahnradtriebfahrzeugen war seit 1874 die Schweizerische Lokomotiv- und Maschinenfabrik (SLM) in Winterthur. Nach der Auflösung der SLM im Jahr 1998 wurde der Geschäftsbereich Schmalspur-, Zahnrad- und Spezialfahrzeuge von Stadler Rail übernommen. Von den weltweit bei bestehenden Zahnradbahnen in Betrieb stehenden Triebfahrzeugen stammen mehr als zwei Drittel von der SLM[2] oder von Stadler. Die Lokomotivfabrik Floridsdorf in Wien besaß die alleinigen Lizenzrechte des Zahnstangensystems Abt für das Gebiet Österreich-Ungarns. Sie wurde damit neben der weltweit tätigen SLM zur größten Produzentin von Zahnradbahntriebfahrzeugen und lieferte fast alle in der Doppelmonarchie bestellten Zahnradlokomotiven, unter anderem die Maschinen der Erzbergbahn und der Bosnisch-Herzegowinischen Landesbahnen. In Deutschland erwarb sich die Maschinenfabrik Esslingen einen besonderen Ruf durch den Bau von Zahnradlokomotiven. In den USA belieferte Baldwin Locomotive Works in Philadelphia einige amerikanische Auftraggeber. Nach Asien und Afrika lieferten hauptsächlich SLM und Esslingen.
Die Bauartbezeichnungen der Schweizer Lokomotiven und Triebwagen unterscheiden zwischen reinen und gemischten Zahnradbahnen. Bei reinen Zahnradfahrzeugen kommt das h an erster Stelle nach den Großbuchstaben (z. B. Zahnradtriebwagen Bhe 4/4), bei kombiniertem Adhäsions- und Zahnradantrieb am Schluss (Beh 4/4). Eine H 2/2 ist eine reine Zahnraddampflokomotive, eine HG 2/2 eine kombinierte Adhäsions- und Zahnradlokomotive.
Remove ads
Triebfahrzeuge für reine Zahnradbahnen
Zusammenfassung
Kontext
Bei den reinen Zahnradbahnen werden die Räder nur für die Abstützung und Führung der Fahrzeuge benützt. Die Fortbewegung der Fahrzeuge erfolgt ausschließlich über die Zahnräder. Solche Zahnradbahnen überwinden mit vertikal eingreifenden Zahnrädern Maximalneigungen von 250–300 ‰.
Dampflokomotiven
Dampflokomotiven für reine Zahnradbahnen weisen in der Regel zwei Triebzahnräder oder ein Triebzahnrad und ein Bremszahnrad auf. Für größere Zugmassen müssen zwei Triebzahnräder angewendet werden (recht häufig beim System Abt), damit der Zahndruck nicht zu hoch wird und um der Gefahr des Aufkletterns des Zahnrads aus der Zahnstange zu begegnen. Solche Lokomotiven der Bauart Abt wurden z. B. von der Wengernalp-, der Snowdon-, der Schafberg- und der Schneebergbahn beschafft. Eine Lokomotive mit drei Triebzahnrädern ist bei Pike’s Peak Railway zur Anwendung gekommen.[3]
Zahnraddampflokomotiven sind fast ausschließlich als Tendermaschinen gebaut, um die gesamte Zugmasse möglichst tief zu halten und die gesamte Lokomotivmasse für die Sicherung des Zahneingriffs auszunutzen. Für die Ergänzung des Speisewasservorrats wird unterwegs mehr Zeit einberechnet.
Da man in den unterschiedlichen Neigungen störende Schwankungen des Wasserstands im Kessel befürchtete, wurden die ersten Lokomotiven der Vitznau-Rigi-Bahn mit stehendem Kessel ausgerüstet. Im Betrieb und besonders im Unterhalt bewährten sich diese Kessel nicht, so dass sie nach 12 bis 19 Jahren durch liegende, um etwa 10 % geneigte Kessel ersetzt wurden.
Die marktbeherrschende Stellung der SLM führte zu einer gewissen Standardisierung der Bauarten. Die Bilderreihen illustrieren jeweils die Entwicklung der Zahnradtriebfahrzeuge,[3][4] wobei bei nicht von der SLM oder Stadler Rail stammenden Fahrzeugen der Hersteller erwähnt ist:
- H 1/2 der Arth-Rigi-Bahn mit einem Triebzahnrad und liegendem Kessel, geliefert von der Internationalen Gesellschaft für Bergbahnen (1875)
- Maschine mit einem Triebzahnrad T, das mit Blindwelle b1 und Übersetzung von den Zylindern C angetrieben wird. Hintere Laufachse L mit Bremszahnrad und Bremsscheiben b2
- Die Dampftriebwagen Bhm 1/2 der Pilatusbahn sind eine Sonderkonstruktion für das Zahnstangensystem Locher (1886)
- Die Abtsche Zahnradlokomotive H 2/3 der Monte-Generoso-Bahn mit zwei Triebzahnrädern war eine Originalkonstruktion der SLM (1889)
- Bei Maschinen mit zwei Triebzahnrädern erfolgt der Antrieb über eine einarmige Schwinge R mit tiefliegendem Drehpunkt a
Elektrische und dieselelektrische Triebfahrzeuge

1) Motoren
2) Vorgetriebe
3) Getriebe
4) Triebzahnrad
5) Rutschkupplung
6) Bandbremse auf Motorwelle
7) Bandbremse (Klinkenbremse),
mit dem Triebzahnrad fest verbunden

1) Fahrmotor
2) Vorgetriebe
3) Kardanwelle
4) Getriebebremse
5) zweistufiges Getriebe
6) Zahnradbremse
7) Triebzahnrad
Da in vielen Gebirgen ausreichend Wasser zur Stromerzeugung zur Verfügung steht, wurde bereits 1892 mit der Chemin de fer du Salève in den Hochsavoyen die erste elektrische Zahnradbahn der Welt dem Verkehr übergeben, die mit 600 Volt Gleichspannung betrieben wurde. Noch vor der Jahrhundertwende wurden die Gornergrat- und die Jungfraubahn eröffnet, wobei man sich dem damaligen Stand der Technik entsprechend zur Verwendung von Drehstrom entschied. Seit dem 20. Jahrhundert verkehrt die große Mehrheit der elektrisch betriebenen Zahnradbahnen mit Gleichstrom.
Der Antrieb heutiger Fahrzeuge erfolgt mit Kompakteinheiten, die Motor, Getriebe, Bremstrommel und Triebzahnrad umfassen.[5] Jeder Fahrmotor treibt ein an einem Radsatz frei drehend gelagertes Triebzahnrad an. Wegen der verhältnismäßig kleinen Fahrgeschwindigkeit hat das Getriebe meistens eine doppelte Übersetzung. Zur Vermeidung von unerwünschten Radentlastungen durch die Motordrehmomente werden die Fahrmotoren üblicherweise quer im Drehgestell eingebaut. Die Triebzahnräder mit Evolventenverzahnung greifen immer mindestens mit zwei Zähnen in die Zahnstange. Sie sind tangential gefedert zum Ausgleich von Stößen, die durch Zahnstangenteilungsfehler verursacht werden können.
Die Anzahl der Triebachsen wird durch die notwendige Zugkraft bestimmt. Für moderne Doppeltriebwagen mit vier baugleichen Drehgestellen genügt in vielen Fällen eine einmotorige Auslegung. Drehgestelle mit je einer Trieb- und einer Laufachse haben den Vorteil gleichmäßiger Zahnstangenbelastung, erlauben Doppeltraktion zweier Doppeltriebwagen[6] und sind im Fall einer Entgleisung sicherer als zwei Trieb- und zwei Laufdrehgestelle.[7]
- He 2/2 der Gornergratbahn, hier als Denkmal in Stalden, mit zwei Motoren und zwei Triebzahnrädern (1898)
- Der BCeh 2/3 der Arth-Rigi-Bahn für 1500 V Gleichspannung ist der älteste noch in Betrieb stehende Zahnradtriebwagen der Welt (1911)
- Bhe 2/4 der Vitznau-Rigi-Bahn, Wagenkasten in selbsttragender Stahlkonstruktion, talseitiges Lauf- und bergseitiges Triebdrehgestell mit zwei Motoren und Tatzlagerantrieb (1937)
- BChe 2/4 der Rochers-de-Naye-Bahn mit je einer Trieb- und Laufachse pro Drehgestell (1938)
- Die viermotorigen ABDhe 4/4 der Wengernalpbahn mit Steuerwagen ersetzten lokbespannte Züge (1947)
- Dieselelektrischer Zahnradtriebwagen Bhm 2/4 der Pike's Peak Railway mit zwei Unterflur-Dieselmotoren (1960)
- Der Doppeltriebwagen Bhe 4/8 der Gornergratbahn hat vier Drehgestelle mit je einer Trieb- und Laufachse. (1965)
- Die Anschnittsteuerung der BDhe 4/8 der Jungfraubahn ermöglicht auch bei Drehstrom-Fahrzeugen eine schnellere Berg- als Talfahrt. (1992)[7]
- Die He 2/2 der Wengernalpbahn ist das erste Zahnradfahrzeug mit Drehstrom-Umrichterantrieb. (1995)
- Vierachsige Umrichter-Berglokomotive 19 der Bayerischen Zugspitzbahn für 40 t Vorstelllast auf 250 ‰ (2016)[9]
Die neueren technischen Entwicklungen finden sowohl bei reinen als auch gemischten Zahnradbahnen Anwendung:
- Triebwagen Nr. 6 der Bayerischen Zugspitzbahn mit Sicken in den Seitenwänden zur Masseeinsparung (1978)
- Zwei dreiteilige BDSeh 4/8 der Matterhorn-Gotthard-Bahn mit Panorama- und Niederflurwagen und Drehstrom-Umrichterantrieb (2002)
- Der Zahnrad-GTW der Cremallera de Núria basiert auf einer Großserie von Adhäsionsfahrzeugen, was Kosten spart. (2003)
- Mit Biodiesel betriebene Lokomotive M4 „Agiocochook“ der Mount Washington Cog Railway, ein Eigenbau der Bahngesellschaft (2008)[10]
Remove ads
Triebfahrzeuge für gemischte Bahnen
Zusammenfassung
Kontext
Dampflokomotiven
Gekuppelter Antrieb
Die erste Lokomotive für gemischten Adhäsions- und Zahnradbetrieb war die „Gnom“ für die 1350 Meter lange Werkbahn des Sandsteinbruchs Ostermundigen bei Bern.[11] Das Zahnrad lief auf der Adhäsionsstrecke ohne Eingriff leer mit.
Bei der Erzbahn Žakarovce und dann bei der Brünigbahn und der Padangbahn auf Sumatra wurden zunächst Lokomotiven mit zwei Zylindern und gekuppelten Adhäsions- und Zahnradtriebwerk verwendet. Die einfach gebauten Maschinen eigneten sich für kleinere Zugkräfte, jedoch bewährten sie sich nicht im Betrieb auf längeren Strecken wie der Brüniglinie.
- „Gnom“ des Steinbruchs Ostermundigen (1871, Internationale Gesellschaft für Bergbahnen)
- Lok der Erzbahn Žakarovce in der heutigen Slowakei für gemischten Adhäsions- und Zahnradbetrieb (1884, Maschinenfabrik Esslingen)
- HG 2/2 für die Brüniglinie der Jura-Bern-Luzern-Bahn für gemischten Betrieb (1887)
- Lokomotive der Achenseebahn von 1889 mit kombiniertem Adhäsions- und Zahnradantrieb (nach System Riggenbach), gebaut von der Lokomotivfabrik Floridsdorf.
- Gekuppelte Triebwerke mit Zylindern C, Blindwelle b, Übersetzung v/V, Triebzahnrad T, Kuppelstange c und Triebachsen R
Getrennte Zahnrad- und Adhäsionsantriebe
Ab dem Jahr 1885 hat man damit begonnen, bei längeren Adhäsionsbahnen einzelne Abschnitte mit Zahnstangen für die Überwindung steiler Talstufen anzuwenden (anstelle künstlicher Längenentwicklungen). Für diesen Betrieb waren verkuppelte Antriebe wegen der auftretenden Zwängungskräfte schlecht geeignet. Das hatte zur Folge, dass Adhäsions- und Zahnradtriebwerk getrennt wurden, wodurch die Abnutzung der Adhäsionsräder problemloser wurde. Der Adhäsionsantrieb wird dabei grundsätzlich auf der ganzen Strecke verwendet. Das Zahnradtriebwerk wird nur auf den Zahnstangenabschnitten aktiviert und nach dem Verlassen der Steilrampe wieder stillgesetzt. Anfänglich wurden die Lokomotiven nach der Bauart Abt mit innen liegendem Zahnradtriebwerk konstruiert und beide Triebwerke hatten einen eigenen Regler und Steuerung. Zur Minderung des Dampfverbrauchs wurde später der Verbundantrieb verwendet wie bei den HG 3/4 der Furka-Oberalp-Bahn.
siehe auch: Zahnrad-Dampflokomotiven der Bauart Abt

Bei Schmalspurlokomotiven für Adhäsions- und Zahnstangenstrecken war es aber oft schwierig, die Innentriebwerke unterzubringen. Eine gute Lösung fand die SLM mit dem System Winterthur, das für Adhäsions- und Zahnradtriebwerk äußere Lage und doch getrennte Ausführung erlaubt. Das ermöglicht eine gute Zugänglichkeit und damit eine einfachere Wartung des Triebwerks. Bei zunehmender Radreifenabnutzung lässt sich die Tiefe des Zahneingriffs leicht nachstellen.
Die zwei untenliegenden Hochdruckzylinder wirken auf das Adhäsionstriebwerk und bei reinem Adhäsionsbetrieb arbeiten sie mit einfacher Dampfdehnung. Der Dampf entweicht anschließend direkt ins Blasrohr. Auf den Zahnstangenabschnitten arbeitet die Lokomotive in Verbundwirkung, indem der Dampf nach den unteren Adhäsions-Hochdruckzylindern in die oben liegenden Zahnrad-Niederdruckzylinder geleitet wird. Durchmesser und Kolbenhub der vier Zylinder sind dabei annähernd gleich groß. Bedingt durch die Übersetzung des Vorgeleges arbeitet das Zahnradtriebwerk mit ungefähr der doppelten Drehzahl wie das Adhäsionstriebwerk, womit das richtige Volumenverhältnis zwischen den Hoch- und Niederdruckzylindern entsteht.[12]
Durch die Verbundwirkung wird der Dampf besser ausgenutzt und es resultiert ein geringerer Kohle- und Wasserverbrauch. Es ergibt sich ein guter Ausgleich zwischen dem Zahnrad- und dem Adhäsionsantrieb, der das Schleudern des Adhäsionsantriebs vermindert, aber nicht ausschließen kann. Die raschen, aber nicht zu starken Auspuffschläge des Zahnradtriebwerks bewirken eine gute Feueranfachung und damit Dampfentwicklung. Die Einfahrt in einen Zahnstangenabschnitt bleibt dennoch komplex, weil zuerst das Zahnradtriebwerk über ein Hilfsventil auf die passende Drehzahl beschleunigt werden muss. Erst nach vollendeter Einfahrt kann das Umschaltventil zwischen Hoch- und Niederdruckzylinder betätigt werden und die beiden Triebwerke arbeiten dann mit zweistufiger Dampfdehnung im Verbundbetrieb. Bei der Einfahrt ins Gefälle muss zusätzlich auch noch die Steuerung in die Gegenrichtung ausgelegt werden und das Umschaltventil für das Ansaugen von Frischluft geöffnet werden. Anschließend kann die Geschwindigkeit durch die Gegendruckbremsen beider Triebwerke reguliert werden.
Das System Winterthur sicherte der SLM eine große Zahl von Aufträgen im In- und Ausland.[13] Es kam bei vielen Dampflokomotiven mit gemischtem Adhäsions- und Zahnradantrieb zum Einsatz und wurde auch von der Maschinenfabrik Esslingen verwendet. Durch das Vorgelege des Zahnradtriebwerks läuft dieses im Betrieb in umgekehrter Drehrichtung wie das Adhäsionstriebwerk
- Die von Adolf Klose konstruierte HG 2/3 der Appenzeller Straßenbahn (ASt) war die erste Vierzylinder-Verbundzahnradlokomotive der Welt. (1889)
- Die 38 IIIc5 der Bosnisch-Herzegowinischen Staatsbahnen waren neben den R.370 der FS eine der meistgebauten Zahnradlokomotiven der Welt. (Floridsdorf, 1894)[14]
- Dreikuppler-Maschine kkStB 69 der Erzbergbahn mit hinterer Laufachse und zwei Triebzahnrädern (1890, Lokomotivfabrik Floridsdorf)
- Sechsachsige KkStB 269 der Erzbergbahn mit innenliegenden Niederdruckzylindern für die zwei Triebzahnräder, hergestellt in Floridsdorf (1912)
- Bei der HG 2/4 der kurvenreichen Appenzeller Bahn wurde erstmals der Antrieb System Winterthur angewandt. (1904)
- Die 22 HG 3/3 mit Antrieb System Winterthur bewährten sich auf der Brünigstrecke und bei der Berner-Oberland-Bahn. (1905)
- Kitson-Meyer-Gelenklok der Transandenbahn von Kitson & Co in Leeds mit Außenrahmen, Hallschen Kurbeln, vier Triebachsen, zwei Triebzahnrädern und Achsfolge D’(3zz) (1909)
- D1’-Lokomotive der Padangbahn auf Sumatra, angetrieben mit System Winterthur und einem Triebzahnrad (1913)[15]
- Lokomotive der Klasse X System Winterthur der Nilgiri Mountain Railway in Indien mit vier Kuppelachsen und zwei Triebzahnrädern (1913)[16]
- Fünfachsige 97.5 für die Zahnradbahn Honau-Lichtenstein aus Esslingen, Antrieb System Winterthur mit einem Triebzahnrad (1922)
Elektrische und dieselbetriebene Triebfahrzeuge
Verkuppelter Antrieb


1) Fahrmotor
2) Vorgetriebe
3) Kardanwelle
4) Getriebebremse
5) zweistufiges Getriebe
6) Zahnradbremse
7) Triebzahnrad
8) eventuelle Adhäsionskupplung
Bei diesem Antrieb wird der Zahnradteil mit einem Adhäsionsteil erweitert. Der Außendurchmesser des Triebzahnrades ist meistens kleiner als der Triebraddurchmesser. Deswegen sind zwei verschiedene Übersetzungen erforderlich. Obwohl sie so gewählt werden, dass beide Antriebsteile die gleiche Fahrgeschwindigkeit ergeben sollen, ist dies nur bei halb abgenutzten Radreifen möglich. Bei neuen und abgenutzten Radreifen entsteht zwischen Rad und Schiene ein Schlupf mit entsprechend hoher Abnutzung. Deswegen ist ein dauernd verkuppelter Antrieb nur für Strecken mit einem bescheidenen Anteil an Zahnstangenabschnitten geeignet. Außerdem muss die zulässige Radreifenabnutzung auf 2 % verringert werden. Mit einer Adhäsionskupplung lässt sich der Adhäsionsantrieb im Zahnradbetrieb abkuppeln, was bei modernen Triebfahrzeugen üblich ist. Auf der Zahnradstrecke wird der Triebradsatz abgekuppelt und läuft dann frei mit, wodurch der Schlupf eliminiert wird. Bei verkuppelten Antrieben wird auf den Zahnstangenabschnitten die Zugkraft sowohl über das Triebzahnrad und als auch mit Haftreibung über die Triebräder übertragen.
Bei einer Kombination von schnellen Adhäsionsstrecken und steilen Zahnradstrecken kann es notwendig werden, den Antrieb mit einem Schaltgetriebe auszuführen, um für beide Bereiche die geeigneten Fahrmotordrehzahlen zur Verfügung zu haben.
- Drehstrombetriebener HGe 2/2 der Jungfraubahn mit unterschiedlichen Übersetzungen für Adhäsion- und Zahnradantrieb (1906)
- Triebwagen BCFeh 4/4 der Martigny-Châtelard-Bahn für 750 V Gleichspannung mit Tatzlagerantrieb statt hochgelagerten Motoren (1906)
- HGe 4/4 der Brig-Visp-Zermatt-Bahn (BVZ) für 11 kV und 16⅔ Hz Wechselspannung mit vier Fahrmotoren und Tatzlagerantrieb (1929)
- ABDeh 4/4 der St. Gallen-Gais-Appenzell-Altstätten-Bahn mit zwei unter dem Wagenboden eingebauten Fahrmotoren (1930)
- Schienenbusse der Reihe M1c der Mediterranea-Calabro-Lucane mit Zahnradantrieb von verschiedenen italienischen Herstellern vereinfachten den Bahnbetrieb. (1933)
- ABDeh 4/4 303 der Berner Oberland-Bahn mit selbsttragendem Wagenkasten und zwei quer eingebauten Fahrmotoren pro Drehgestell (1949)[4]
- Dieselhydraulische T 426.0 der Tschechoslowakischen Staatsbahnen für die Strecken Tanvald–Kořenov und Podbrezová–Tisovec, hergestellt von SGP in Wien-Floridsdorf (1961)
- BDeh 4/4 der Luzern-Stans-Engelberg-Bahn mit zwei Übersetzungen für die 246-‰-Zahnstange und 75 km/h Höchstgeschwindigkeit auf der Adhäsionsstrecke (1964)
- Dieselelektrische Zahnradlokomotive BB 204 der Padangbahn der Indonesischen Staatsbahn mit vier Triebachsen und vier Triebzahnrädern für 200 Tonnen Last auf 70 ‰ (1982)[19]
Getrennter Adhäsions- und Zahnradantrieb
Bei der Elektrifizierung der Berner Oberland-Bahn im Jahr 1914 wurde das bewährte Konzept der vorhandenen Dampflokomotiven HG 3/3 mit getrenntem Adhäsions- und Zahnradantrieb übernommen. Auf diese Art unterstützt der Adhäsionsantrieb den Zahnradantrieb und entlastet die Zahnstange. Dies ist insbesondere bei Zahnradbahnen mit mäßigen Neigungen von 80–120 ‰ vorteilhaft, wo ein großer Teil der Traktionskräfte ohne Zahnstange übertragen werden kann. Getrennte Antriebe, wie man sie bis in die 1940er Jahre erfolgreich realisiert hatte, blieben allerdings lange Zeit uninteressant, weil man einen Teil der früher teuren Antriebsmotoren auf den verhältnismäßig langen Adhäsionsstrecken nicht nutzen kann. Inzwischen hat sich das technische Umfeld geändert. Die teuren und unterhaltsaufwendigen Getriebe lassen sich durch leichte und kostengünstige separate Asynchronfahrmotoren ersetzen.[20]
Beim getrennten Antrieb ist die richtige Drehzahl des Triebzahnrades vor der Einfahrt in die Zahnstange nicht gewährleistet. Deswegen ist im Triebfahrzeug eine Synchronisierungseinrichtung unumgänglich.
- CFeh 3/3 der Altstätten-Gais-Bahn mit zwei Motoren nur für Adhäsionsstrecken und einem Motor nur für Zahnstangenstrecken (1911)
- Bei der HGe 3/3 der Berner Oberland-Bahn wirkt ein Motor auf die drei mit Stangen gekuppelten Achsen und ein zweiter auf das Triebzahnrad. (1914)
- 85 Tonnen schwere Doppellokomotive E-100 der Chilenischen Transandenbahn mit vier Motoren für Adhäsionsantrieb und zwei für Zahnradantrieb (1927)
- Deh 4/6 der SBB für die Brünigbahn (Bo’2zz’Bo’) mit vier Adhäsionstatzlagermotoren in den Enddrehgestellen und zusätzlich zwei im mittleren Zahnradtriebgestell (1941)
- Die Diesellokomotiven der ČSD-Baureihe T 426.0 wurden 1961 für den Betrieb auf den Strecken Tanvald–Kořenov und Podbrezová–Tisovec in der Tschechoslowakei beschafft. Die dieselhydraulischen Lokomotiven haben zwei unabhängige Strömungsgetriebe, die im Zahnradbetrieb gemeinsam zugeschaltet werden können.
- Dreiteiliger ABeh 160 „Fink“ der Zentralbahn mit zwei Adhäsions- und zwei Zahnradtriebdrehgestellen. Die Zahnraddrehgestelle haben je eine Antriebs- und eine Laufachse. (2012)
- Die weltweit stärksten Zahnradlokomotiven He 4/4 der MRS Logística haben je zwei Drehgestelle mit je zwei Motoren für Adhäsions- und Zahnradantrieb. (2012)[21]
Differentialantrieb

1) motorseitige Antriebswelle
2) Sonnenrad (→ Adhäsion)
3) Hohlrad (→ Zahnrad)
4) zum Zahnradantrieb
5) zum Adhäsionsantrieb

Der Differentialantrieb für Zahnrad-/Adhäsionslokomotiven hoher Leistung verteilt die Zugkraft selbsttätig auf die Adhäsions- und die Zahnräder und entlastet so die Zahnstange. Dieser Antrieb eignet sich für Zahnradbahnen mit bis zu 125 ‰ Neigung.[5] Das Fahrmotordrehmoment wird in einem als Planetengetriebe ausgebildeten Verteildifferential zwischen dem Adhäsions- und dem Zahnradantrieb aufgeteilt. Wenn die Adhäsionsräder bei schlechten Verhältnissen zu schleudern beginnen, greift die im Antrieb integrierte Schlupfbegrenzung korrigierend ein und der nicht mehr auf die Schienen übertragbare Zugkraftanteil wird stufenlos von den Triebzahnrädern übernommen.
Im Bremsbetrieb funktioniert die Einrichtung sinngemäß und der adhäsionsmäßige Überschuss der Bremskraft wird zur Zahnstange geleitet. Ein Blockieren der Adhäsionsräder wird im Zahnstangenbetrieb verunmöglicht.
Auf den zahnstangenlosen Abschnitten wird der Antrieb starr verkuppelt.[22]
Der teure Differentialantrieb wird bei neuen Fahrzeugen nicht mehr verwendet, denn die elektrischen Komponenten haben sich im Verlaufe der Zeit stärker verbilligt als die mechanischen. Die Trennung von Adhäsions- und Zahnradantrieb erlaubt auf Zahnstangenabschnitten die gleichzeitige Nutzung der Fahrmotoren für beide Antriebe.[23]
Wagenkasten
Die Technik der Bergbahnen ist bestimmt durch die Masseoptimierung. Die Wagenkasten sind bei reinen Zahnradbahnen vorwiegend in Stahlbauweise ausgeführt, denn die verschiedenen Bedingungen wie z. B. unterschiedliche Fahrzeugbegrenzungen erlauben nur den Bau geringer Stückzahlen. Bei Bahnen mit gemischtem Adhäsions- und Zahnradbetrieb werden die Reisezugwagen aus Massegründen oft in Aluminiumbauweise, die Triebfahrzeuge wegen der schweren Antriebsausrüstung vorwiegend als Stahlkonstruktionen erstellt.[5]
Remove ads
Personen- und Güterwagen
Zusammenfassung
Kontext

Grundsätzlich unterscheiden sich die Wagen der Zahnradbahnen nicht von denen der Adhäsionsbahnen. So wurden in der Schweiz gleiche schmalspurige Leichtstahl- und Einheitswagen sowohl an Adhäsions- als auch an Zahnradbahnen geliefert. Die normalspurige Rorschach-Heiden-Bergbahn hatte von den SBB zwei Einheitswagen I und von der Bodensee-Toggenburg-Bahn (BT) einen Steuerwagen übernommen. Die leichten, versuchsweise in Aluminium gebauten Einheitswagen sind für die Zahnradbahn nach Heiden besonders geeignet.[24] Durch die immer weitere Verbreitung der Triebzüge ist die Zahl der Reisezugwagen auf Zahnradbahnen rückläufig.
Güterwagen sind auch bei Zahnradbahnen zu finden, die sich auf den Personenverkehr beschränken. Der Transport von Material und Werkzeugen auf die häufig schwer zugänglichen Baustellen ist auf der Straße oft nicht möglich.[25]
Die Wagen der Zahnradbahnen sind in der Regel mit einem Bremszahnrad ausgestattet. Bei leichten Gepäck-, Güter- und Dienstwagen, bei Fahrzeugen für Spezialtransporte und bei Vorstellwagen kann auf die Zahnradbremse verzichtet werden.[26] Auch die auf die Matterhorn-Gotthard-Bahn (MGB) übergangsfähigen Wagen der Rhätischen Bahn, die ihrerseits keine Zahnstangenabschnitte aufweist, verfügen über eine Zahnradbremse. Die MRS Logística in Brasilien verzichtet bei ihren Güterwagen auf ein Bremszahnrad und schiebt sie bei der Bergfahrt auf dem 104 ‰ steilen Zahnstangenabschnitt der Bahnstrecke Santos–Jundiaí.[27]
Bei gezogenen Zügen muss im Falle einer Zugtrennung jeder Zugteil angehalten und gegen Entlaufen gesichert werden können.[28] Bahnen mit Neigungen über 250 ‰ müssen die Wagen bergseitig des Triebfahrzeugs einreihen und bei der Bergfahrt auf gezogene Züge verzichten.[29] Von 1964 bis 2010 verkehrten die Personenzüge der Luzern-Stans-Engelberg-Bahn als dreiteilige Wende- oder Pendelzüge mit talwärts eingereihten Triebfahrzeug, wobei auf dem 246 ‰ steilen Zahnstangenabschnitt hinter dem Triebwagen ein Post- oder leichter Güterwagen zulässig war. Auch die nur selten verkehrenden Güterzüge wurden auf der Bergfahrt geschoben.[30] Wendezüge werden auf Zahnstangenabschnitten nach Möglichkeit bergwärts geschoben.[Anm. 1] Wenn die Sicherheit gegen Entgleisen nicht gewährleistet ist, wird das Triebfahrzeug bergseitig eingereiht. Zudem bleibt der Zug auf der Talfahrt beim elektrischen Bremsen des Triebfahrzeug gestreckt.[31] Die Matterhorn-Gotthard-Bahn verzichtet bei der Fahrt ihrer Wendezüge über den Oberalppass auf der Passhöhe auf das Umstellen des Triebfahrzeugs; die Züge verkehren auf dem ganzen Laufweg in gleicher Formation.
Auf normalspurigen, mit üblichen Zug- und Stoßvorrichtung verkehrenden Zahnradbahnen können gängige Eisenbahnwagen verkehren. Früher war das vielerorts üblich und in Deutschland auf Zahnstangenabschnitten mit einer Neigung bis zu 100 ‰ zulässig.[32] Die Rorschach-Heiden-Bergbahn (RHB) mit 93,6 ‰ Neigung beförderte bis in die 1990er Jahre UIC-Güterwagen,[33] die wegen des fehlenden Bremszahnrads bergwärts geschoben wurden. In Zügen mit mehreren Wagen ohne Zahnradbremse reihte die RHB Wagen mit Bremszahnrad ein.[24]
Die Zahnradbremsen der Wagen sind im Abschnitt Eingriff der Zahnräder in die Zahnstange beschrieben.
- Einheitswagen II der MGB. Den gleichen Wagentyp beschafften auch mehrere Adhäsionsbahnen.
- Kesselwagen der MGB. Das Bremszahnrad befindet sich an der rechten Achse.
- Schotterwagen der Zugspitzbahn. Die Kabine für den Bremser weist auf den Einsatz als Vorstellwagen hin.
- Vorstellwagen der Arth-Rigi-Bahn. Am bergseitigen Ende der Vorstellwagen gibt es nur einen Stoßpuffer.
Remove ads
Sicherheit und Bremsen
Zusammenfassung
Kontext
Der Bau und Betrieb der Zahnrad- und anderen Eisenbahnen werden in der Schweiz durch die Eisenbahnverordnung[34] und den Ausführungsbestimmungen dazu[35] geregelt. Weil in anderen Ländern keine so detaillierten Regelungen für Zahnradbahnen bestehen, akzeptieren weltweit fast alle Eisenbahnen und Behörden die Schweizer Vorschriften als verbindlich.
Bremsen

a) Nabe des Triebzahnrades
b) Triebzahnrad
c) Bremstrommel mit innerer
Klinkenzahnung
d) Klinke
e) Klinkenfeder
f) Bremsband


Die Bremsen spielen für die Sicherheit der Bergbahnen eine wesentliche Rolle. Zahnradtriebfahrzeuge müssen über zwei voneinander unabhängige mechanische Bremssysteme verfügen. Sie werden als System 1 und 2 bezeichnet,[36] wobei das Bremssystem 1 stufenlos regulierbar sein muss.[7] Die andere dient als „Notbremse“ und muss den Zug zum Stillstand bringen, ohne dass die Bremsen allenfalls angehängter Wagen mitarbeiten. Die Pufferkräfte an der Zugspitze dürfen jedoch nicht zu groß werden, um eine Entgleisung auszuschließen.[37] Zur Vermeidung übermäßiger Bremskräfte muss ein Ansprechen beider Bremssysteme unbedingt verhindert werden.[7] Im Notfall muss der Zug mit einem dieser Bremssysteme mit mindestens 0,3 m/s² zum Stillstand gebracht werden. Die Höchstgeschwindigkeit bei der Talfahrt wird durch die thermische Leistungsfähigkeit der Bremssysteme 1 und 2 bestimmt.[36] Ein nur wenige Sekunden ungebremster Zug würde wegen des Hangabtriebs sehr stark beschleunigt und könnte bereits nach kurzer Zeit nicht mehr unter Kontrolle gebracht werden.[38] Die kurze Reaktionszeit verunmöglicht die Verwendung von Steuerventilen nach UIC-Norm.[5]
Bei Triebfahrzeugen mit Drehgestellen sind die beiden unabhängigen Anhaltebremsen als Getriebebremse oder Bremse auf der Motorwelle und als Zahnradbremse ausgebildet (vgl. Abbildungen im Abschnitt Elektrische und dieselelektrische Triebfahrzeuge).[7] Fahrzeuge für gemischten Adhäsions- und Zahnradverkehr sind zusätzlich noch mit einer Adhäsionsbremse ausgerüstet. Bei Neigungen von höchstens 125 ‰ kann als regulierbare Anhaltebremse die automatische Bremse des ganzen Zuges verwendet werden[37] oder das Bremssystem 2 durch die Widerstandsbremse unterstützt werden.[39]
Wenn das Gefälle 125 ‰ übersteigt, müssen Zahnradtriebfahrzeuge zusätzlich zu den beiden Bremssystenen 1 und 2 mit einer Beharrungsbremse ausgerüstet sein.[7] Als Beharrungsbremse zählen Rekuperationsbremse, Motorbremsen, hydraulische Bremsen und Gegendruckbremse. Eine fahrdrahtunabhängige Widerstandsbremse erlaubt bei Stromausfällen eine Räumung der Strecke.[5] Die mechanische Bremse kann im Normalfall nicht als Beharrungsbremse ausgelegt werden, weil die in Wärme umzusetzende potentielle Energie des Zuges die Bremsen thermisch überlasten würde.[40] Die Beharrungsbremsen müssen auch bei Ausfall der Stromversorgung oder des Dieselmotors funktionieren. Jede Anhaltebremse (System 1 und 2) muss alleine in der Lage sein, den Zug auf dem größten Gefälle bei maximalem Zugsgewicht zum Stillstand zu bringen. Die Bremskräfte sind ein wichtiger Faktor der Sicherheit gegen Entgleisen. Als Anhaltebremsen kommen bei neuen Fahrzeugen unerschöpfliche Federspeicher-Bandbremsen zum Einsatz.
Bei einseitig geneigten Strecken wird oft eine Anhaltebremse als richtungsabhängige Klinkenbremse gebaut. Sie bremst nur bei Talfahrt. Bei der Bergfahrt ist die angezogene Klinkenbremse durch einen Klinkenmechanismus freilaufend und verhindert Rückwärtsrollen des Zuges. Bei der Talfahrt kann die gelöste Klinkenbremse jederzeit als normale Bremse benutzt werden.
Dass die Zahnstange für das Bremsen mindestens so wichtig ist wie für die Bergfahrt, zeigte sich 1995 und 2005[41], als eine Adhäsionslokomotive Ge 4/4 III der Rhätischen Bahn den 110 ‰ steilen Oberalppass mit eigener Kraft erklomm. Zur Sicherheit wurde eine jeweils talseitig gekuppelte Zahnradlokomotive zum Bremsen mitgegeben.[42] Triebfahrzeuge für Adhäsionsstrecken mit mehr als 60 ‰ Gefälle sind mit Magnetschienenbremsen oder Wirbelstromschienenbremsen ausgestattet.[43]
Die Zahnradbremsen der Eisenbahnwagen sind im Abschnitt Eingriff der Zahnräder in die Zahnstange beschrieben.
Selbsterregte Beharrungsbremse für Umrichterfahrzeuge

L: Eingangsfilter-Drossel, C: Eingangsfilter-Kondensatoren, R: Bremswiderstände, B: Brems-Chopper, SR Stromrichter, ASM: Asynchron-Fahrmotor
Zunächst zögerte man, Zahnradfahrzeuge mit Drehstrom-Umrichterantrieb zu bauen. Beim Ausfall eines Stromrichters oder dessen Leitelektronik hätte der Zug mit mechanischen Bremsen im Gefälle angehalten und ein Reservetriebfahrzeug angefordert werden müssen. Wegen unzulässig langer Streckenbelegung und Trassenführung in oft unbewohnten und schwer zugänglichen Gebieten ging man dieses Risiko nicht ein.[40]
Die Lösung besteht darin, im Störfall die Fahrmotoren vom Stromrichter abzutrennen und jede Phase der Drehstrom-Asynchronmotoren mit einem RC-Kreis zu verbinden. Die drei RC-Kreise bestehen aus den ohnehin vorhandenen Bremswiderständen und den Eingangsfilter-Kondensatoren des Stromrichters. Sobald sich die Motoren drehen, erregen sie sich selbst und erzeugen eine Bremskraft. Diese elektrische Bremse kann nicht reguliert werden. Ihre Geschwindigkeit stabilisiert sich auf Werte je nach Gefälle und Zuggewicht. Zum Anhalten wird die mechanische Bremse eingesetzt.[44] Die Schaltung ist so auszulegen, dass der Zug etwas langsamer als im Normalbetrieb talwärts fährt. Diese Selbsterregungsschaltung, die auch in Kleinstkraftwerken eingesetzt wird, wurde in Messfahrten mit der He 2/2 10 der Jungfraubahn im Jahr 1992 erprobt[40] und 1995 bei den He 2/2 31 und 32 der Wengernalpbahn erstmals angewandt.
Sicherheit gegen Entgleisen


Im Zahnradbetrieb kann das Fahrzeug einzig über den Zahneingriff in die Zahnstange gebremst werden. Der Zahneingriff muss darum unter allen möglichen Bedingungen wie starkem Seitenwind, unterschiedliche Reibungskoeffizienten, Notbremsung oder Ausfall der Bremse in einem Zugteil gewährleistet sein. Die bei einer Bremsung während der Talfahrt auftretenden Kräfte belasten die vorderen und entlasten die hinteren Radsätze. Zusammen mit dem Zahnauftrieb kann die Entlastung des hinteren Radsatzes bei starker Bremsung die Gewichtskraft übersteigen und das Fahrzeug aus den Schienen heben. Weil diese gefährliche Situation verhindert werden muss, dürfen die Bremsen nicht zu stark sein.[45]
Bei Zahnstangen mit vertikalem Zahneingriff entsteht bei schlechter Schmierung eine senkrecht zur Schienenebene gerichtete Kraft, der Zahnauftrieb. Er hat die Tendenz, das Fahrzeug von den Schienen abzuheben und darf keinesfalls die Gewichtskraft des Fahrzeuges überwinden. Damit die Gefahr einer Entgleisung nicht zu groß wird, muss die Zahnstange gut geschmiert werden.
Bei geschobenen und gezogenen Zügen ist die Länge der Züge beschränkt. Die Last des Zuges übt auf der Höhe der Kupplung eine Kraft auf das Triebfahrzeug auf. Diese Längskraft und die Höhendifferenz zwischen Kupplung und Zahnstange bewirken ein Drehmoment auf das Triebfahrzeug, das dieses zusätzlich zum Zahnauftrieb bergseitig entlastet und die Sicherheit gegen Entgleisen beeinträchtigen kann. In engen Kurven verschärft sich diese Gefahr durch Seitenkräfte zusätzlich.[38] In diesen Situationen ist die Zugbildung mit starren Mittelpufferkupplungen wie Typ +GF+ oder Schwab vorteilhafter als die von der Matterhorn-Gotthard-Bahn verwendeten Mittelpuffer mit zwei Schraubenkupplungen.[46]
Bei Bürstenfeuer am Fahrmotorkollektor oder bei Kurzschlüssen können übermäßige Kräfte entstehen, die die Stabilität des Triebfahrzeuges gefährden. Zur Verhinderung werden zwischen den Fahrmotoren und den Triebzahnrädern Rutschkupplungen eingebaut. Beim Antrieb über einen Drehstrommotor ist diese Einrichtung nicht nötig, weil dessen maximales Drehmoment bekannt ist.
Ursprünglich wurde die „Stand- und Entgleisungssicherheit“ nach der Methode von Borgeaud nachgewiesen.[47] Die Sicherheit muss auch bei der Überlagerung von kritischen Situation, z. B. Talfahrt im Bogen mit Doppelbremsung und Seitenwind, gewährleistet sein.[48]
In den 1970er-Jahren wurden aufgrund der damaligen Möglichkeiten manche Vereinfachungen, aber auch Vernachlässigungen, an der Methode von Borgeaud vorgenommen.[48][49] Heute wird der Nachweis der Sicherheit gegen Entgleisen mittels Computersimulation erbracht,[48] wobei in der Regel eine relative Radentlastung bis zu 95 % toleriert wird.[50] Die bisherige Methode von Borgeaud ist nicht mehr Stand der Technik.[48]
Helixverwindung


Bisher nicht in den Vorschriften zur Sicherheit gegen Entgleisen berücksichtigt wird die Gleisverwindung in geneigten Gleisbögen, kurz als Helixverwindung bezeichnet. Die Helixverwindung beträgt (mit Neigung , Bogenradius und Stützweite ).[51] In Gleisbögen ist die Neigung der äußeren Schiene geringer als die der inneren. Befindet sich ein Drehgestell auf einem solchen Gleisabschnitt, wird das äußere Rad der oberen Achse entlastet und im Extremfall von der Schiene gehoben. Bei Neigungen bis 40 ‰ ist die Helixverwindung vernachlässigbar. Bei größeren Neigungen kann sie jedoch die maximalen Werte der Überhöhungsverwindung überschreiten. Bei der Überlagerung der beiden Verwindungen besteht je nach Randbedingungen ein Entgleisungsrisiko. In einigen für die Gleistrassierung verwendeten Computerprogrammen wird die Helixverwindung noch nicht berücksichtigt.[51]
Die Überlagerung von Helixverwindung und Überhöhungsverwindung ließe sich vermeiden, wenn die Überhöhungsverwindung bereits vor dem Übergangsbogenanfang eingebaut würde. Obwohl ohne Fliehkräfte im geraden Gleisabschnitt eine Überhöhung bestehen würde, wäre der Einfluss auf den Fahrkomfort gering, denn bei Bergbahnen werden wegen den niedrigen Geschwindigkeiten nur geringe Überhöhungen eingebaut.[48]

Im Gleisbau der Bergbahnen müsste nicht nur die Überhöhungsverwindung, sondern auch die davon unabhängige Helixverwindung beziehungsweise die Gesamtverwindung begrenzt werden. Bei bestehenden Strecken ist es jedoch kaum möglich, Neigungen oder Bogenradien großräumig anzupassen. In diesem Fall müsste die bestehende Helixverwindung in der Fahrzeugauslegung berücksichtigt werden.[48]
| |
Überwachungen

Weil bei einer Überbeanspruchung der mechanischen Anhaltebremsen wegen der Erwärmung die Gefahr des Bremsversagens besteht, ist die Überwachung der Fahrgeschwindigkeit während der Talfahrt besonders wichtig. Bereits bei kleiner Überschreitung wird eine mechanische Bremse betätigt und der Zug angehalten. Auch andere für die Funktion der Bremsen wichtige Zustände werden überwacht. Eine Überbremsung durch gleichzeitige Betätigung beider mechanischer Anhaltebremsen muss verhindert werden. Bahnen mit kombiniertem Zahnrad- und Adhäsionsbetrieb sind mit einer Betriebsartenüberwachung ausgestattet. Gleismagnete oder Eurobalisen überwachen bei den Zahnstangenein- und -ausfahrten, ob der Lokomotivführer den Regimewechsel Adhäsion/Zahnrad oder umgekehrt auf dem Führertisch richtig umgestellt hat. Mit der Betriebsartenumschaltung werden auf dem Triebfahrzeug umfangreiche, zum Teil sicherheitsrelevante Funktionsänderungen vorgenommen.[37]
Die Sicherheitssteuerung, die Übergeschwindigkeitskontrolle, die Betriebsartenüberwachung oder andere technische Überwachungen können automatisch eine Schnellbremsung auslösen.
Sicherungs- und Signalanlagen
Die Sicherungs- und Signalanlagen reiner Zahnradbahnen sind den örtlichen Verhältnissen angepasst und weichen von denen der Hauptbahnen oft ab. Sie sind abhängig von den zulässigen Geschwindigkeiten, der Zugdichte und den Kreuzungsstellen auf eingleisigen Strecken. Folgefahrten mehrerer Züge auf Sicht sind häufig zugelassen (vgl. Abbildung rechts im Abschnitt Vor- und Nachteile).[5] Weil Zahnstangenweichen in der Regel nicht auffahrbar sind, ist eine eindeutige Signalisierung gegen Fahrt in falschstehende Weichen sinnvoll.[52] Vorsignale sind aufgrund der geringen Geschwindigkeiten in Zahnstangenabschnitten bei ausreichender Sicht auf die Hauptsignale häufig nicht erforderlich. Der Streckenblock dient meist nur als Gegenfahrschutz. Die Gleisfreimeldung erfolgt bei neueren Anlagen meist über Achszähler[5], denn Gleisstromkreise können wegen der teilweise kleinen Achslasten der leicht gebauten Fahrzeuge und des Fehlens der Zugkraftübertragung über die Schienen unzuverlässig sein. Diese neigen deshalb zur Verschmutzung durch Schmiermittelrückstände, Blütenstaub und Falllaub. Es gibt jedoch auch reine Zahnradstrecken mit Gleisfreimeldung durch Gleisstromkreise, zum Beispiel die Zahnradbahn Štrba–Štrbské Pleso in der Hohen Tatra. Die in der Schweiz viele Jahre herrschende Skepsis gegenüber Gleisfreimeldeeinrichtungen mit Achszählern mag den lange ausgeübten Verzicht auf Sicherungsanlagen bei einigen Zahnradbahnen unterstützt haben.[52] Allerdings ist auf Zahnstangenabschnitten das Kollisionsrisiko geringer als bei Adhäsionsbahnen. Die niedrigen Geschwindigkeiten und die formschlüssige Kraftübertragung führen zu kürzeren Bremswegen und bei den oft übersichtlichen Gleisanlagen erhöht sich die Wahrscheinlichkeit, dass bei einer Fehlhandlung die Züge noch vor einem Zusammenstoß anhalten können. Der Betrieb ist zumindest bei reinen Zahnradbahnen überschaubarer, wegen des Zugfunks mit offenem statt selektivem Sprachanruf ist das Bahnpersonal über alle Betriebsabweichungen informiert.[53]

Der Folgezugbetrieb mit Fahrt auf Sicht reiner Zahnradbahnen führt zu Anpassungen bei den Signalanlagen. Weil bei der Wengernalpbahn die Signale nur die Fahrerlaubnis, nicht aber die zulässige Geschwindigkeit vorgeben, werden alle Fahrstraßen mit Fahrbegriff 1 angezeigt. Die Folgefahrten werden angelehnt an das Besetztsignal mit einem waagrechten, orangen Balken signalisiert, der im Hauptsignal integriert ist.[52]
Bei der Ausfahrt aus der Station erfasst ein Achszähler die Gesamtzahl der Achsen aller Folgezüge. Dabei wird dem Folgezug am Ausfahrsignal das Signalbild für eine Folgefahrt gezeigt. An der nächsten Station zählt wiederum ein Achszähler die eintreffenden Achsen. Erst wenn die Gesamtzahl der Achsen eingetroffen ist, kann die Erlaubnis gewechselt werden, um die Strecke für Züge der Gegenrichtung freizugeben. Dadurch entfällt die Signalisierung von Folgezügen an den Zügen selbst.[52]

Mit der Zugbeeinflussung ZSI 127 besteht seit dem Jahr 2003 ein System, das die Sicherheitsbedürfnisse gemischter Adhäsions- und Zahnradbahnen abdeckt. Im Zugsicherungssystem ZSI 127 ist die Betriebsartenüberwachung Adhäsion/Zahnstange integriert und die Geschwindigkeitsüberwachung erfolgt mit einer Genauigkeit von ±1 km/h. ZSI 127 ist mit ETCS-Komponenten aufgebaut, insbesondere mit Eurobalisen, Euroloops und ETCS-Fahrzeuggeräten. Auf ein Bediengerät im Führerstand nach ETCS-Norm (Driver Machine Interface) musste verzichtet werden, weil der Platz in den engen Führerständen der Schmalspurfahrzeuge oft nicht ausreicht. Wegen der Zahnstange in Gleismitte sind die Balisen außermittig angeordnet. ZSI 127 kommt bei der Zentralbahn und bei der Berner Oberland-Bahn zum Einsatz.[54] 2013 legte das Bundesamt für Verkehr eine Weiterentwicklung des Systems ZSI 127 als Standard für alle Schweizer Schmalspurbahnen, auch für solche mit reinem Adhäsionsantrieb, fest.[55]
Geschwindigkeitserhöhung V+
Auf Zahnstangenstrecken wird bei der Talfahrt die Höchstgeschwindigkeit durch die Leistungsfähigkeit der Bremssysteme 1 und 2 bestimmt (vgl. Abschnitt Bremsen). Jedes dieser beiden Bremssysteme muss für sich alleine ohne thermische Überlastung den Zug sicher zum Stillstand bringen. Die Matterhorn-Gotthard-Bahn ist bestrebt, zukünftig bei der Talfahrt die gleiche Geschwindigkeit wie bei der Bergfahrt zu fahren. Sie rüstete für Versuchsfahrten den Orion-Triebzug 312 entsprechend aus. Der dazu erforderliche regulatorische Aufwand ist jedoch sehr groß. Grundidee ist, dass für die Bremsberechnung nicht nur die Bremssysteme 1 und 2, sondern auch die elektrische Bremse miteinbezogen werden. Zudem ließen sich die beiden Bremssysteme abwechselnd oder gleichzeitig, aber dosiert anlegen.[36]
Fahrzeugzulassung
Weil sich die Zulassungsbehörden außerhalb der Schweiz nur sehr selten mit Zahnradfahrzeugen beschäftigen müssen, war es über Jahrzehnte üblich, dass das schweizerische Bundesamt für Verkehr (BAV) die Neuzulassung des zahnradtechnischen Teils als Gutachten durchführte. Dieses wurde dann von der zuständigen Zulassungsbehörde anerkannt, wie das heute auch bei Adhäsionsfahrzeugen im Rahmen eines Cross-Acceptance-Verfahrens möglich ist. Weil das BAV keine Gutachten mehr erstellen darf, wurde für die 2016 abgelieferte Berglokomotive 19 der Bayerischen Zugspitzbahn beim BAV eine Schweizer Typenzulassung beantragt, die von einem unabhängigen Sachverständigen geprüft und dem deutschen Eisenbahn-Bundesamt vorgelegt wurde.[56]
Remove ads
Siehe auch
Literatur
- Walter Hefti: Zahnradbahnen der Welt. Birkhäuser, Basel 1971, ISBN 3-7643-0550-9.
- Walter Hefti: Zahnradbahnen der Welt. Nachtrag. Birkhäuser, Basel 1976, ISBN 3-7643-0797-8.
- Carl Dolezalek: Zahnbahnen. In: Victor von Röll (Hrsg.): Enzyklopädie des Eisenbahnwesens. 2. Auflage. Band 10: Übergangsbrücken–Zwischenstation. Urban & Schwarzenberg, Berlin / Wien 1923, S. 451–468.
- Carl Dolezalek: Gemischte Bahnen. In: Victor von Röll (Hrsg.): Enzyklopädie des Eisenbahnwesens. 2. Auflage. Band 5: Fahrpersonal–Gütertarife. Urban & Schwarzenberg, Berlin / Wien 1914, S. 272–273.
- Alfred Moser: Der Dampfbetrieb der schweizerischen Eisenbahnen 1847–1966. Birkhäuser, Basel 1967, S. 353–385
- Žarko Filipović: Elektrische Bahnen: Grundlagen, Triebfahrzeuge, Stromversorgung. Springer-Verlag, 2004, ISBN 978-3-540-55093-8. S. 203–212
- Rolf Honegger: 100 Jahre Brünigbahn – Die Zahnradtechnik In: Schweizer Ingenieur und Architekt, Band 106 (1988), Heft 40 (E-Periodica.ch, PDF; 1,1 MB).
- Wolfgang Messerschmidt: Zahnradbahnen, gestern, heute, in aller Welt. Die Geschichte der Zahnradbahnen, Franckh, Stuttgart 1972, ISBN 3-440-03833-5
- Karl Sachs: 50 Jahre schweizerische elektrische Bergbahnen. In: Schweizerische Bauzeitung (SBZ). (archiviert in E-Periodica der ETH-Bibliothek):
Erster Teil. In: SBZ, Band 66 (1948), Heft 50 (PDF, 4,2 MB)
Schluss. In: SBZ, Band 66 (1948), Heft 51 (PDF, 5,0 MB) - Arthur Meyer, Josef Pospichal: Zahnradbahnlokomotiven aus Floridsdorf, Verlag bahnmedien.at, Wien 2012, ISBN 978-3-9503304-0-3.
- Theo Weiss: Stadler – von der Stollenlokomotive zum Doppelstockzug. Minirex, Luzern 2010, ISBN 978-3-907014-33-2, S. 104–109
- Josef Hons: Bergbahnen der Welt. Zahnradbahnen, Schienen- und Standseilbahnen, Schwebebahnen und Skilifts. transpress-Verlag, Berlin 1990, ISBN 3-344-00475-1.
- Zahnstangenbahnen. In: Lexikon der gesamten Technik und ihrer Hilfswissenschaften, herausgegeben von Otto Lueger, Band 8. Stuttgart und Leipzig 1910, S. 962–965. (Zeno.org)
Remove ads
Weblinks
Commons: Zahnradbahn – Sammlung von Bildern, Videos und Audiodateien
- Matthias Probst: Auf Zahnrädern in die Berge. In: Internetseite von Schweizer Radio und Fernsehen (SRF), mit einem Filmausschnitt von 4:45 min Dauer aus der Sendung Einstein vom 30. Mai 2013.
- Jens Merte: Zahnradbahnen in Deutschland. Abgerufen am 15. Juli 2017.
- Jean-Luc Rickenbacher: Mit dem Zahnrad den Berg hinauf In: Blog Schweizerisches Nationalmuseum, 18. September 2025.
Remove ads
Einzelnachweise
Anmerkungen
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads