Top-Fragen
Zeitleiste
Chat
Kontext

Takai-Dualität

Aus Wikipedia, der freien Enzyklopädie

Remove ads

Takai-Dualität, benannt nach Hiroshi Takai, ist ein Konzept aus dem mathematischen Teilgebiet der Funktionalanalysis. Ist ein C*-dynamisches System mit einer abelschen, lokalkompakten Gruppe, so operiert die Dualgruppe auf derart, dass man die C*-Algebra bis auf Tensorierung mit den kompakten Operatoren aus zurückgewinnen kann.

Remove ads

Die duale Operation

Es sei ein C*-dynamisches System mit einer abelschen, lokalkompakten Gruppe . Dann gibt es dazu die Dualgruppe der stetigen Gruppenhomomorphismen , die mit der Topologie der kompakten Konvergenz wieder eine abelsche, lokalkompakte Gruppe ist. Weiter sei die in dicht liegende Faltungsalgebra der stetigen Funktionen mit kompaktem Träger. Für sei

, wobei .

Dann lässt sich zu einem ebenso bezeichneten Automorphismus auf ausdehnen und ist ein Gruppenhomomorphismus von der Dualgruppe in die Automorphismengruppe von , der zu einem C*-dynamischen System macht, das man das duale C*-dynamische System nennt.

Remove ads

Dualitätssatz von Takai

Es sei ein C*-dynamisches System mit einer abelschen, lokalkompakten Gruppe und sei das duale C*-dynamische System. Ist die C*-Algebra der kompakten Operatoren über dem Hilbertraum der bzgl. des Haarmaßes quadratintegrierbaren Funktionen, so ist .[1][2][3]

Remove ads

Bemerkungen

Zusammenfassung
Kontext

Dies ist eine Analogie zur auf Takesaki zurückgehenden Dualität für W*-dynamischen Systeme. Die Tensorierung mit der vollen Operatorenalgebra für Von-Neumann-Algebren ist bei der hier vorgestellten Takai-Dualität durch das Tensorieren mit der C*-Algebra der kompakten Operatoren ersetzt.

Ist separabel, zum Beispiel wenn abzählbar unendlich und diskret ist, so ist isomorph zur C*-Algebra der kompakten Operatoren über dem Folgenraum . Man nennt zwei C*-Algebren und stabil-isomorph, wenn . Der Satz über die Takei-Dualität sagt somit, dass das Kreuzprodukt des zu dualen C*-dynamischen Systems stabil-isomorph zu ist.

Ist eine endliche Gruppe der Ordnung , so ist und daher . Insbesondere folgt bis auf Isomorphie und man erhält eine handliche Realisierung des Kreuzproduktes als Unteralgebra einer Matrizenalgebra.

Ist als konkretes Beispiel die zweielementige Gruppe, so ist und ein Automorphismus mit . Man erhält mit obiger Isomorphie

.

Um dann daraus zu erhalten, muss man nach obigem Satz die duale Operation von auf betrachten. ist natürlich die Identität auf dem Kreuzprodukt und

.

Wendet man darauf dieselbe Einbettung in die Matrizenalgebra an, erhält man insgesamt eine Unteralgebra von , von der man zeigen kann, dass sie zu isomorph ist.

Remove ads

Einzelnachweise

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads